The response regulator PhoP4 is required for late developmental events in Free

Abstract

Phosphate regulation is complex in the developmental prokaryote , and requires at least four two-component systems (TCSs). Here, the identification and characterization of a member of one TCS, designated PhoP4, is reported. insertion and in-frame deletion strains caused spore viability to be decreased by nearly two orders of magnitude, and reduced all three development-specific phosphatase activities by 80–90 % under phosphate-limiting conditions. Microarray and quantitative PCR analyses demonstrated that PhoP4 is also required for appropriate expression of the predicted operon of inorganic phosphate assimilation genes. Unlike the case for the other three Pho TCSs, the chromosomal region around does not contain a partner histidine kinase gene. Yeast two-hybrid analyses reveal that PhoP4 interacts reciprocally with PhoR2, the histidine kinase of the Pho2 TCS; however, the existence of certain phenotypic differences between and mutants suggests that PhoP4 interacts with another, as-yet unidentified, histidine kinase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28820-0
2006-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/6/1609.html?itemId=/content/journal/micro/10.1099/mic.0.28820-0&mimeType=html&fmt=ahah

References

  1. Amemura M, Makino K, Shinagawa H, Nakata A. 1990; Cross talk to the phosphate regulon of Escherichia coli by PhoM protein: PhoM is a histidine protein kinase and catalyzes phosphorylation of PhoB and PhoM-open reading frame 2. J Bacteriol 172:6300–6307
    [Google Scholar]
  2. Antelmann H, Scharf C, Hecker M. 2000; Phosphate starvation-inducible proteins of Bacillus subtilis : proteomics and transcriptional analysis. J Bacteriol 182:4478–4490 [CrossRef]
    [Google Scholar]
  3. Blattner F. R, Plunkett G., 3rd, Bloch C. A. 14 other authors 1997; The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474 [CrossRef]
    [Google Scholar]
  4. Browning D. F, Whitworth D. E, Hodgson D. A. 2003; Light-induced carotenogenesis in Myxococcus xanthus : functional characterization of the ECF sigma factor CarQ and antisigma factor CarR. Mol Microbiol 48:237–251 [CrossRef]
    [Google Scholar]
  5. Carrero-Lerida J, Garcia-Hernandez R, Perez J, Moraleda-Muñoz A, Muñoz-Dorado J. 2005; PhoR1-PhoP1, a third two-component system of the family PhoRP from Myxococcus xanthus : role in development. J Bacteriol 187:4976–4983 [CrossRef]
    [Google Scholar]
  6. Chou P. Y, Fasman G. D. 1978; Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol 47:45–148
    [Google Scholar]
  7. Diodati M. E, Ossa F, Caberoy N. B, Jose I. R, Hiraiwa W, Igo M. M, Singer M, Garza A. G. 2006; Nla18, a key regulatory protein required for normal growth and development of Myxococcus xanthus . J Bacteriol 188:1733–1743 [CrossRef]
    [Google Scholar]
  8. Gyuris J, Golemis E, Chertkov H, Brent R. 1993; Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75:791–803 [CrossRef]
    [Google Scholar]
  9. Hagen D. C, Bretscher A. P, Kaiser D. 1978; Synergism between morphogenetic mutants of Myxococcus xanthus . Dev Biol 64:284–296 [CrossRef]
    [Google Scholar]
  10. Harris B. Z, Kaiser D, Singer M. 1998; The guanosine nucleotide (p)ppGpp initiates development and A-factor production in Myxococcus xanthus . Genes Dev 12:1022–1035 [CrossRef]
    [Google Scholar]
  11. Higgs P. I, Cho K, Whitworth D. E, Evans L. S, Zusman D. R. 2005; Four unusual two-component signal transduction homologs, RedC to RedF, are necessary for timely development in Myxococcus xanthus . J Bacteriol 187:8191–8195 [CrossRef]
    [Google Scholar]
  12. Hirani T. A, Suzuki I, Murata N, Hayashi H, Eaton-Rye J. J. 2001; Characterization of a two-component signal transduction system involved in the induction of alkaline phosphatase under phosphate-limiting conditions in Synechocystis sp. PCC 6803. Plant Mol Biol 45:133–144 [CrossRef]
    [Google Scholar]
  13. Hodgkin J, Kaiser D. 1977; Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus . Proc Natl Acad Sci U S A 74:2938–2942 [CrossRef]
    [Google Scholar]
  14. Hulett F. M, Lee J, Shi L, Sun G, Chesnut R, Sharkova E, Duggan M. F, Kapp N. 1994; Sequential action of two-component genetic switches regulates the PHO regulon in Bacillus subtilis . J Bacteriol 176:1348–1358
    [Google Scholar]
  15. Jakobsen J. S, Jelsbak L, Welch R. D, Cummings C, Goldman B, Stark E, Slater S, Kaiser D. 2004; σ [sup]54[/sup] enhancer binding proteins and Myxococcus xanthus fruiting body development. J Bacteriol 186:4361–4368 [CrossRef]
    [Google Scholar]
  16. Julien B, Kaiser A. D, Garza A. 2000; Spatial control of cell differentiation in Myxococcus xanthus . Proc Natl Acad Sci U S A 97:9098–9103 [CrossRef]
    [Google Scholar]
  17. Kaiser D. 1979; Social gliding is correlated with the presence of pili in Myxococcus xanthus . Proc Natl Acad Sci U S A 76:5952–5956 [CrossRef]
    [Google Scholar]
  18. Kaiser D. 2000; Cell-interactive sensing of the environment. In Prokaryotic Development pp  263–275 Edited by Brun Y. V., Shimkets L. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. Karp P. D, Riley M, Saier M, Paulsen I. T, Collado-Vides J, Paley S. M, Pellegrini-Toole A, Bonavides C, Gama-Castro S. 2002; The EcoCyc database. Nucleic Acids Res 30:56–58 [CrossRef]
    [Google Scholar]
  20. Kashefi K, Hartzell P. L. 1995; Genetic suppression and phenotypic masking of a Myxococcus xanthus frzF [sup]−[/sup] defect. Mol Microbiol 15:483–494 [CrossRef]
    [Google Scholar]
  21. Kenney L. J. 2002; Structure/function relationships in OmpR and other winged-helix transcription factors. Curr Opin Microbiol 5:135–141 [CrossRef]
    [Google Scholar]
  22. Kroos L, Kuspa A, Kaiser D. 1986; A global analysis of developmentally regulated genes in Myxococcus xanthus . Dev Biol 117:252–266 [CrossRef]
    [Google Scholar]
  23. Lewis R. J, Scott D. J, Brannigan J. A, Ladds J. C, Cervin M. A, Spiegelman G. B, Hoggett J. G, Barak I, Wilkinson A. J. 2002; Dimer formation and transcription activation in the sporulation response regulator Spo0A. J Mol Biol 316:235–245 [CrossRef]
    [Google Scholar]
  24. Liu W, Hulett F. M. 1998; Comparison of PhoP binding to the tuaA promoter with PhoP binding to other Pho-regulon promoters establishes a Bacillus subtilis Pho core binding site. Microbiology 144:1443–1450 [CrossRef]
    [Google Scholar]
  25. Makino K, Shinagawa H, Amemura M, Kawamoto T, Yamada M, Nakata A. 1989; Signal transduction in the phosphate regulon of Escherichia coli involves phosphotransfer between PhoR and PhoB proteins. J Mol Biol 210:551–559 [CrossRef]
    [Google Scholar]
  26. Makino K, Amemura M, Kawamoto T, Kimura S, Shinagawa H, Nakata A, Suzuki M. 1996; DNA binding of PhoB and its interaction with RNA polymerase. J Mol Biol 259:15–26 [CrossRef]
    [Google Scholar]
  27. Manoil C, Kaiser D. 1980; Guanosine pentaphosphate and guanosine tetraphosphate accumulation and induction of Myxococcus xanthus fruiting body development. J Bacteriol 141:305–315
    [Google Scholar]
  28. Martinez-Canamero M, Ortiz-Codorniu C, Extremera A. L, Arias J. M, Muñoz-Dorado J. 2003; phoR1 , a gene encoding a new histidine protein kinase Myxococcus xanthus . Antonie Van Leeuwenhoek 83:361–368 [CrossRef]
    [Google Scholar]
  29. Moraleda-Muñoz A, Carrero-Lérida J, Pérez J, Muñoz-Dorado J. 2003; Role of two novel two-component regulatory systems in development and phosphatase expression in Myxococcus xanthus . J Bacteriol 185:1376–1383 [CrossRef]
    [Google Scholar]
  30. Muller-Dieckmann H. J, Grantz A. A, Kim S. H. 1999; The structure of the signal receiver domain of the Arabidopsis thaliana ethylene receptor ETR1. Structure 7:1547–1556 [CrossRef]
    [Google Scholar]
  31. Okamura H, Hanaoka S, Nagadoi A, Makino K, Nishimura Y. 2000; Structural comparison of the PhoB and OmpR DNA-binding/transactivation domains and the arrangement of PhoB molecules on the phosphate box. J Mol Biol 295:1225–1236 [CrossRef]
    [Google Scholar]
  32. Parkinson J. S, Kofoid E. C. 1992; Communication modules in bacterial signaling proteins. Annu Rev Genet 26:71–112 [CrossRef]
    [Google Scholar]
  33. Pham V. D, Shebelut C. W, Zumstein E. J, Singer M. 2005; BrgE is a regulator of Myxococcus xanthus development. Mol Microbiol 57:762–773 [CrossRef]
    [Google Scholar]
  34. Romeo J. M, Esmon B, Zusman D. R. 1986; Nucleotide sequence of the myxobacterial hemagglutinin gene contains four homologous domains. Proc Natl Acad Sci U S A 83:6332–6336 [CrossRef]
    [Google Scholar]
  35. Saldanha A. J. 2004; Java Treeview – extensible visualization of microarray data. Bioinformatics 20:3246–3248 [CrossRef]
    [Google Scholar]
  36. Sambrook J, Fritsch E. F, Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Shimkets L. J. 1999; Intercellular signaling during fruiting-body development of Myxococcus xanthus . Annu Rev Microbiol 53:525–549 [CrossRef]
    [Google Scholar]
  38. Spratt B. G, Hedge P. J, te Heesen S, Edelman A, Broome-Smith J. K. 1986; Kanamycin-resistant vectors that are analogues of plasmids pUC8, pUC9, pEMBL8 and pEMBL9. Gene 41:337–342 [CrossRef]
    [Google Scholar]
  39. Stock A. M, Robinson V. L, Goudreau P. N. 2000; Two-component signal transduction. Annu Rev Biochem 69:183–215 [CrossRef]
    [Google Scholar]
  40. Thompson J. D, Higgins D. G, Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  41. Tusher V. G, Tibshirani R, Chu G. 2001; Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98:5116–5121 [CrossRef]
    [Google Scholar]
  42. Ueki T, Inouye S, Inouye M. 1996; Positive-negative KG cassettes for construction of multi-gene deletions using a single drug marker. Gene 183:153–157 [CrossRef]
    [Google Scholar]
  43. Wanner B. L. 1996; Phosphorus assimilation and control of the phosphate regulon. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp.  1357–1381 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  44. Ward M. J, Zusman D. R. 2000; Developmental aggregation and fruiting body formation in the gliding bacterium Myxococcus xanthus. In Prokaryotic Development pp  243–262 Edited by Brun Y. V., Shimkets L. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  45. Weinberg R. A, Zusman D. R. 1990; Alkaline, acid, and neutral phosphatase activities are induced during development in Myxococcus xanthus . J Bacteriol 172:2294–2302
    [Google Scholar]
  46. Whitworth D. E, Hodgson D. A. 2001; Light-induced carotenogenesis in Myxococcus xanthus : evidence that CarS acts as an anti-repressor of CarA. Mol Microbiol 42:809–819
    [Google Scholar]
  47. Yanisch-Perron C, Vieira J, Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28820-0
Loading
/content/journal/micro/10.1099/mic.0.28820-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed