Antimicrobial activity of potato aspartic proteases (APs) involves membrane permeabilization Free

Abstract

aspartic proteases (APs) with antimicrobial activity are induced after abiotic and biotic stress. In this study the ability of APs to produce a direct antimicrobial effect was investigated. Viability assays demonstrated that APs are able to kill spores of and in a dose-dependent manner. Localization experiments with FITC-labelled APs proved that the proteins interact directly with the surface of spores and hyphae of and . Moreover, incubation of spores and hyphae with APs resulted in membrane permeabilization, as shown by the uptake of the fluorescent dye SYTOX Green. It is concluded that the antimicrobial effect of APs against and is caused by a direct interaction with the microbial surfaces followed by membrane permeabilization.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28816-0
2006-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/7/2039.html?itemId=/content/journal/micro/10.1099/mic.0.28816-0&mimeType=html&fmt=ahah

References

  1. Anson M. L. 1979; The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J Gen Physiol 22:79–89
    [Google Scholar]
  2. Berrocal-Lobo M, Segura A, Moreno M, Molina A, López G, García-Olmedo F. 2002; Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol 128:951–961 [CrossRef]
    [Google Scholar]
  3. Broekaert W. F, Cammue B. P. A, De Bolle M. F. C, Thevissen K, De Samblanx G. W, Osborn R. W. 1997; Antimicrobial peptides from plants. Crit Rev Plant Sci 16:297–323 [CrossRef]
    [Google Scholar]
  4. Brogden K. A. 2005; Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria. Nature 3:238–250
    [Google Scholar]
  5. Brogden K. A, Ackermann M, McCray P. B, Tack B. F. 2003; Antimicrobial peptides in animals and their role in host defences. Int J Antimicrob Agents 22:465–478 [CrossRef]
    [Google Scholar]
  6. Bruhn H, Riekens B, Berninghausen O, Leippe M. 2003; Amoebapores and NK-lysin, members of a class of structurally distinct antimicrobial and cytolytic peptides from protozoa and mammals: a comparative functional analysis. Biochem J 375:737–744 [CrossRef]
    [Google Scholar]
  7. Davies D. R. 1990; The structure and function of the APs. Annu Rev Biophys Chem 19:189–215 [CrossRef]
    [Google Scholar]
  8. De Luca A. J, Jacks T. J, Broekaert J. 1999; Fungicidal and binding properties of three plant peptides. Mycopathologia 144:87–91
    [Google Scholar]
  9. Dixon R. A, Lamb C. J, Paiva N. L, Masoud S. 1996; Improvement of natural defense responses, engineering plants for commercial products and applications. Ann N Y Acad Sci 792:126–139 [CrossRef]
    [Google Scholar]
  10. Ganz T. 2003; Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720 [CrossRef]
    [Google Scholar]
  11. Ge X, Dietrich C, Matsuno M, Li G, Berg H, Xia Y. 2005; An Arabidopsis aspartic protease function as an anti-cell-death component in reproduction and embryogenesis. EMBO Rep 6:282–288 [CrossRef]
    [Google Scholar]
  12. Guevara M. G, Oliva C. R, Machinandiarena M, Daleo G. R. 1999; Purification and properties of an aspartic protease from potato tuber that is inhibited by a basic chitinase. Physiol Plant 106:164–169 [CrossRef]
    [Google Scholar]
  13. Guevara M. G, Daleo G. R, Oliva C. R. 2001; Purification and characterisation of an aspartic protease from potato leaves. Physiol Plant 112:321–326 [CrossRef]
    [Google Scholar]
  14. Guevara M. G, Oliva C. R, Huarte M, Daleo G. R. 2002; An aspartic protease with antimicrobial activity is induced after infection and wounding in intercellular fluids of potato tubers. Eur J Plant Pathol 108:131–137 [CrossRef]
    [Google Scholar]
  15. Guevara M. G, Pires E, Faro C, Daleo G. R, Veríssimo P. 2004; Potato aspartic proteases: induction, antimicrobial activity and substrate specificity. J Plant Pathol 86:233–238
    [Google Scholar]
  16. Hancock R. E. W, Lehrer R. 1998; Cationic peptides: a new source of antibiotics. Trends Biotechnol 16:82–88 [CrossRef]
    [Google Scholar]
  17. Hejgaard J, Jacobsen S, Bjorn S. E, Kragh K. M. 1992; Antifungal activity of chitin binding PR-4 type proteins from barley grain and stressed leaf. FEBS Lett 307:389–392 [CrossRef]
    [Google Scholar]
  18. Kavanagh K, Dowd S. 2004; Histatins: antimicrobial peptides with therapeutic potential. J Pharm Pharmacol 56:285–289 [CrossRef]
    [Google Scholar]
  19. Laemmli U. K. 1970; Cleavage of structral proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  20. Leah R, Tommerup H, Svendsen I, Mundy J. 1991; Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem 266:1564–1573
    [Google Scholar]
  21. Lehrer R. I. 2004; Primate defensins. Nat Rev Microbiol 2:727–738 [CrossRef]
    [Google Scholar]
  22. Lehrer R. I, Barton A, Daher K. A, Harwig S. S, Ganz T, Selsted M. E. 1989; Interaction of human defensins with Escherichia coli . Mechanism of bactericidal activity. J Clin Invest 84:553–561 [CrossRef]
    [Google Scholar]
  23. Levy O. 2004; Antimicrobial proteins and peptides: anti-infective molecules of mammalian leukocytes. J Leukoc Biol 76:1–16 [CrossRef]
    [Google Scholar]
  24. Liu D, Raghothama K. G, Hasegawa P. M, Bressan R. A. 1994; Osmotin overexpression in potato delays development of disease symptoms. Proc Natl Acad Sci U S A 91:1888–1982 [CrossRef]
    [Google Scholar]
  25. Mauch F, Mauch-Mani B, Boller T. 1988; Antifungal hydrolases in pea tissue II: inhibition of fungal growth by combinations of chitinase and β -1,3-glucanase. Plant Physiol 88:936–942 [CrossRef]
    [Google Scholar]
  26. Mutlu A, Gal S. 1999; Plant aspartic proteinases: enzymes on the way to a function. Physiol Plant 105:569–576 [CrossRef]
    [Google Scholar]
  27. Niderman T, Genetet I, Bruyere T, Gees R, Stintzi A, Legrand M, Fritig B, Mosinger E. 1995; Pathogenesis-related PR-1 proteins are antifungal. Isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans . Plant Physiol 108:17–27 [CrossRef]
    [Google Scholar]
  28. Nordberg J, Arner E. S. J. 2001; Reactive oxygen species, antioxidants and the mammalian thioredoxin system. Free Radic Biol Med 31:1287–1312 [CrossRef]
    [Google Scholar]
  29. Oakley B. R, Kirsch D. R, Morris N. R. 1980; A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem 105:361–363 [CrossRef]
    [Google Scholar]
  30. Patrzykat A, Friedrich C. L, Zhang L, Mendoza V, Hancock R. E. 2002; Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli . Antimicrob Agents Chemother 46:605–614 [CrossRef]
    [Google Scholar]
  31. Raikhel N. V, Lee H. I, Broekaert W. F. 1993; Structure and function of chitin-binding proteins. Annu Rev Plant Physiol Plant Mol Biol 44:591–615 [CrossRef]
    [Google Scholar]
  32. Rawlings N. D, Barrett A. J. 1995; Families of aspartic peptidases, and those of unknown catalytic mechanism. Methods Enzymol 248:105–120
    [Google Scholar]
  33. Segura A, Moreno M, Molina A, Garcia-Olmedo F, Madueño F. 1999; Snakin-1, a peptide from potato that is active against plant pathogens. Mol Plant Microbe Interact 12:16–23 [CrossRef]
    [Google Scholar]
  34. Selitrennikoff C. P. 2001; Antifungal proteins. Appl Environ Microbiol 67:2883–2894 [CrossRef]
    [Google Scholar]
  35. Simões I., Faro C. 2004; Structure and function of plant aspartic proteinases. Eur J Biochem 271:2067–2075 [CrossRef]
    [Google Scholar]
  36. Smith P. K, Krohn R. I, Hermanson G. T. 7 other authors 1985; Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85 [CrossRef]
    [Google Scholar]
  37. Terras F, Schoofs H, Thevissen K, Osborn R. W, Vanderleyden J, Cammue B, Broekaert W. F. 1993; Synergistic enhancement of the antifungal activity of wheat and barley thionins by radish and oilseed rape 2S albumins and by barley trypsin inhibitors. Plant Physiol 103:1311–1319
    [Google Scholar]
  38. Theis T, Wedde M, Meyer V, Stahl U. 2003; The antifungal protein from Aspergillus giganteus causes membrane permeabilization. Antimicrob Agents Chemother 47:588–593 [CrossRef]
    [Google Scholar]
  39. Thevissen K, Osborn R. W, Acland D. P, Broekaert W. F. 1997; Specific, high affinity binding sites for an antifungal plant defensin on Neurospora crassa hyphae and microsomal membranes. J Biol Chem 272:32176–32181 [CrossRef]
    [Google Scholar]
  40. Thevissen K, Terras F. R, Broekaert W. F. 1999; Permeabilization of fungal membranes by plant defensin inhibits fungal growth. Appl Environ Microbiol 65:5451–5458
    [Google Scholar]
  41. Thordal-Christensen H, Zhang Z, Wei Y, Collinge D. B. 1997; Subcellular localization of H[sub]2[/sub]O[sub]2[/sub] in plants: H[sub]2[/sub]O[sub]2[/sub] accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plan J 11:1187–1194 [CrossRef]
    [Google Scholar]
  42. Vigers A. J, Roberts W. K, Selitrennikoff C. P. 1991; A new family of plant antifungal proteins. Mol Plant Microbe Interact 4:315–323 [CrossRef]
    [Google Scholar]
  43. Vizioli J, Salzet M. 2002; Antimicrobial peptides from animals: focus on invertebrates. Trends Pharmacol Sci 23:494–496 [CrossRef]
    [Google Scholar]
  44. Woloshuk C. P, Meulenhoff J. S, Sela-Buurlage M, Cornelissen B. J. C, van den Elzen P. J. M. 1991; Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans . Plant Cell 3:619–628 [CrossRef]
    [Google Scholar]
  45. Zasloff M. 2002; Antimicrobial peptides of multicellular organisms. Nature 415:389–395 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28816-0
Loading
/content/journal/micro/10.1099/mic.0.28816-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed