1887

Abstract

aspartic proteases (APs) with antimicrobial activity are induced after abiotic and biotic stress. In this study the ability of APs to produce a direct antimicrobial effect was investigated. Viability assays demonstrated that APs are able to kill spores of and in a dose-dependent manner. Localization experiments with FITC-labelled APs proved that the proteins interact directly with the surface of spores and hyphae of and . Moreover, incubation of spores and hyphae with APs resulted in membrane permeabilization, as shown by the uptake of the fluorescent dye SYTOX Green. It is concluded that the antimicrobial effect of APs against and is caused by a direct interaction with the microbial surfaces followed by membrane permeabilization.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28816-0
2006-07-01
2020-07-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/7/2039.html?itemId=/content/journal/micro/10.1099/mic.0.28816-0&mimeType=html&fmt=ahah

References

  1. Anson M. L. 1979; The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J Gen Physiol22:79–89
    [Google Scholar]
  2. Berrocal-Lobo M, Segura A, Moreno M, Molina A, López G, García-Olmedo F. 2002; Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol128:951–961[CrossRef]
    [Google Scholar]
  3. Broekaert W. F, Cammue B. P. A, De Bolle M. F. C, Thevissen K, De Samblanx G. W, Osborn R. W. 1997; Antimicrobial peptides from plants. Crit Rev Plant Sci16:297–323[CrossRef]
    [Google Scholar]
  4. Brogden K. A. 2005; Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria. Nature3:238–250
    [Google Scholar]
  5. Brogden K. A, Ackermann M, McCray P. B, Tack B. F. 2003; Antimicrobial peptides in animals and their role in host defences. Int J Antimicrob Agents22:465–478[CrossRef]
    [Google Scholar]
  6. Bruhn H, Riekens B, Berninghausen O, Leippe M. 2003; Amoebapores and NK-lysin, members of a class of structurally distinct antimicrobial and cytolytic peptides from protozoa and mammals: a comparative functional analysis. Biochem J375:737–744[CrossRef]
    [Google Scholar]
  7. Davies D. R. 1990; The structure and function of the APs. Annu Rev Biophys Chem19:189–215[CrossRef]
    [Google Scholar]
  8. De Luca A. J, Jacks T. J, Broekaert J. 1999; Fungicidal and binding properties of three plant peptides. Mycopathologia144:87–91
    [Google Scholar]
  9. Dixon R. A, Lamb C. J, Paiva N. L, Masoud S. 1996; Improvement of natural defense responses, engineering plants for commercial products and applications. Ann N Y Acad Sci792:126–139[CrossRef]
    [Google Scholar]
  10. Ganz T. 2003; Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol3:710–720[CrossRef]
    [Google Scholar]
  11. Ge X, Dietrich C, Matsuno M, Li G, Berg H, Xia Y. 2005; An Arabidopsis aspartic protease function as an anti-cell-death component in reproduction and embryogenesis. EMBO Rep6:282–288[CrossRef]
    [Google Scholar]
  12. Guevara M. G, Oliva C. R, Machinandiarena M, Daleo G. R. 1999; Purification and properties of an aspartic protease from potato tuber that is inhibited by a basic chitinase. Physiol Plant106:164–169[CrossRef]
    [Google Scholar]
  13. Guevara M. G, Daleo G. R, Oliva C. R. 2001; Purification and characterisation of an aspartic protease from potato leaves. Physiol Plant112:321–326[CrossRef]
    [Google Scholar]
  14. Guevara M. G, Oliva C. R, Huarte M, Daleo G. R. 2002; An aspartic protease with antimicrobial activity is induced after infection and wounding in intercellular fluids of potato tubers. Eur J Plant Pathol108:131–137[CrossRef]
    [Google Scholar]
  15. Guevara M. G, Pires E, Faro C, Daleo G. R, Veríssimo P. 2004; Potato aspartic proteases: induction, antimicrobial activity and substrate specificity. J Plant Pathol86:233–238
    [Google Scholar]
  16. Hancock R. E. W, Lehrer R. 1998; Cationic peptides: a new source of antibiotics. Trends Biotechnol16:82–88[CrossRef]
    [Google Scholar]
  17. Hejgaard J, Jacobsen S, Bjorn S. E, Kragh K. M. 1992; Antifungal activity of chitin binding PR-4 type proteins from barley grain and stressed leaf. FEBS Lett307:389–392[CrossRef]
    [Google Scholar]
  18. Kavanagh K, Dowd S. 2004; Histatins: antimicrobial peptides with therapeutic potential. J Pharm Pharmacol56:285–289[CrossRef]
    [Google Scholar]
  19. Laemmli U. K. 1970; Cleavage of structral proteins during the assembly of the head of bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  20. Leah R, Tommerup H, Svendsen I, Mundy J. 1991; Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem266:1564–1573
    [Google Scholar]
  21. Lehrer R. I. 2004; Primate defensins. Nat Rev Microbiol2:727–738[CrossRef]
    [Google Scholar]
  22. Lehrer R. I, Barton A, Daher K. A, Harwig S. S, Ganz T, Selsted M. E. 1989; Interaction of human defensins with Escherichia coli . Mechanism of bactericidal activity. J Clin Invest84:553–561[CrossRef]
    [Google Scholar]
  23. Levy O. 2004; Antimicrobial proteins and peptides: anti-infective molecules of mammalian leukocytes. J Leukoc Biol76:1–16[CrossRef]
    [Google Scholar]
  24. Liu D, Raghothama K. G, Hasegawa P. M, Bressan R. A. 1994; Osmotin overexpression in potato delays development of disease symptoms. Proc Natl Acad Sci U S A91:1888–1982[CrossRef]
    [Google Scholar]
  25. Mauch F, Mauch-Mani B, Boller T. 1988; Antifungal hydrolases in pea tissue II: inhibition of fungal growth by combinations of chitinase and β -1,3-glucanase. Plant Physiol88:936–942[CrossRef]
    [Google Scholar]
  26. Mutlu A, Gal S. 1999; Plant aspartic proteinases: enzymes on the way to a function. Physiol Plant105:569–576[CrossRef]
    [Google Scholar]
  27. Niderman T, Genetet I, Bruyere T, Gees R, Stintzi A, Legrand M, Fritig B, Mosinger E. 1995; Pathogenesis-related PR-1 proteins are antifungal. Isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans . Plant Physiol108:17–27[CrossRef]
    [Google Scholar]
  28. Nordberg J, Arner E. S. J. 2001; Reactive oxygen species, antioxidants and the mammalian thioredoxin system. Free Radic Biol Med31:1287–1312[CrossRef]
    [Google Scholar]
  29. Oakley B. R, Kirsch D. R, Morris N. R. 1980; A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem105:361–363[CrossRef]
    [Google Scholar]
  30. Patrzykat A, Friedrich C. L, Zhang L, Mendoza V, Hancock R. E. 2002; Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli . Antimicrob Agents Chemother46:605–614[CrossRef]
    [Google Scholar]
  31. Raikhel N. V, Lee H. I, Broekaert W. F. 1993; Structure and function of chitin-binding proteins. Annu Rev Plant Physiol Plant Mol Biol44:591–615[CrossRef]
    [Google Scholar]
  32. Rawlings N. D, Barrett A. J. 1995; Families of aspartic peptidases, and those of unknown catalytic mechanism. Methods Enzymol248:105–120
    [Google Scholar]
  33. Segura A, Moreno M, Molina A, Garcia-Olmedo F, Madueño F. 1999; Snakin-1, a peptide from potato that is active against plant pathogens. Mol Plant Microbe Interact12:16–23[CrossRef]
    [Google Scholar]
  34. Selitrennikoff C. P. 2001; Antifungal proteins. Appl Environ Microbiol67:2883–2894[CrossRef]
    [Google Scholar]
  35. Simões I., Faro C. 2004; Structure and function of plant aspartic proteinases. Eur J Biochem271:2067–2075[CrossRef]
    [Google Scholar]
  36. Smith P. K, Krohn R. I, Hermanson G. T.7 other authors 1985; Measurement of protein using bicinchoninic acid. Anal Biochem150:76–85[CrossRef]
    [Google Scholar]
  37. Terras F, Schoofs H, Thevissen K, Osborn R. W, Vanderleyden J, Cammue B, Broekaert W. F. 1993; Synergistic enhancement of the antifungal activity of wheat and barley thionins by radish and oilseed rape 2S albumins and by barley trypsin inhibitors. Plant Physiol103:1311–1319
    [Google Scholar]
  38. Theis T, Wedde M, Meyer V, Stahl U. 2003; The antifungal protein from Aspergillus giganteus causes membrane permeabilization. Antimicrob Agents Chemother47:588–593[CrossRef]
    [Google Scholar]
  39. Thevissen K, Osborn R. W, Acland D. P, Broekaert W. F. 1997; Specific, high affinity binding sites for an antifungal plant defensin on Neurospora crassa hyphae and microsomal membranes. J Biol Chem272:32176–32181[CrossRef]
    [Google Scholar]
  40. Thevissen K, Terras F. R, Broekaert W. F. 1999; Permeabilization of fungal membranes by plant defensin inhibits fungal growth. Appl Environ Microbiol65:5451–5458
    [Google Scholar]
  41. Thordal-Christensen H, Zhang Z, Wei Y, Collinge D. B. 1997; Subcellular localization of H[sub]2[/sub]O[sub]2[/sub] in plants: H[sub]2[/sub]O[sub]2[/sub] accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plan J11:1187–1194[CrossRef]
    [Google Scholar]
  42. Vigers A. J, Roberts W. K, Selitrennikoff C. P. 1991; A new family of plant antifungal proteins. Mol Plant Microbe Interact4:315–323[CrossRef]
    [Google Scholar]
  43. Vizioli J, Salzet M. 2002; Antimicrobial peptides from animals: focus on invertebrates. Trends Pharmacol Sci23:494–496[CrossRef]
    [Google Scholar]
  44. Woloshuk C. P, Meulenhoff J. S, Sela-Buurlage M, Cornelissen B. J. C, van den Elzen P. J. M. 1991; Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans . Plant Cell3:619–628[CrossRef]
    [Google Scholar]
  45. Zasloff M. 2002; Antimicrobial peptides of multicellular organisms. Nature415:389–395[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28816-0
Loading
/content/journal/micro/10.1099/mic.0.28816-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error