The channel-tunnel HI1462 of reveals differences to TolC Free

Abstract

Efflux pumps play a major role in multidrug resistance of pathogenic bacteria. The TolC homologue HI1462 was identified as the single channel-tunnel in required to form a functional multidrug efflux pump. The outer-membrane protein was expressed in , purified and reconstituted in black lipid membranes. It exhibited a comparatively small single-channel conductance of 43 pS in 1 M KCl and is the first known TolC homologue which is anion-selective. The HI1462 structure was modelled and an arginine residue lining the tunnel entrance was identified. The channel-tunnel of a mutant with the arginine substituted by an alanine residue was cation-selective and had a sevenfold higher single-channel conductance compared to wild-type. These results confirm that the arginine is responsible for anion selectivity and forms a salt bridge with a glutamate residue of the adjacent monomer, establishing a circular network, which keeps the tunnel entrance in a tightly closed conformation. In experiments, both the wild-type HI1462 and the mutant were able to substitute for TolC in the haemolysin secretion system, but not in the AcrAB/TolC multidrug efflux pump. The structure–function relationship of HI1462 is discussed in the context of the well-studied TolC channel-tunnel of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28805-0
2006-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/6/1639.html?itemId=/content/journal/micro/10.1099/mic.0.28805-0&mimeType=html&fmt=ahah

References

  1. Akama H, Kanemaki M, Yoshimura M, Tsukihara T, Kashiwagi T, Yoneyama H, Narita S, Nakagawa A, Nakae T. 2004; Crystal structure of the drug discharge outer membrane protein, OprM, of Pseudomonas aeruginosa : dual modes of membrane anchoring and occluded cavity end. J Biol Chem 279:52816–52819 [CrossRef]
    [Google Scholar]
  2. Akatsuka H, Binet R, Kawai E, Wandersman C, Omori K. 1997; Lipase secretion by bacterial hybrid ATP-binding cassette exporters: molecular recognition of the LipBCD, PrtDEF, and HasDEF exporters. J Bacteriol 179:4754–4760
    [Google Scholar]
  3. Andersen C. 2003; Channel-tunnels: outer membrane components of type I secretion systems and multidrug efflux pumps of Gram-negative bacteria. Rev Physiol Biochem Pharmacol 147:122–165
    [Google Scholar]
  4. Andersen C, Hughes C, Koronakis V. 2000; Chunnel vision. Export and efflux through bacterial channel-tunnels. EMBO Rep 1:313–318 [CrossRef]
    [Google Scholar]
  5. Andersen C, Hughes C, Koronakis V. 2002a; Electrophysiological behavior of the TolC channel-tunnel in planar lipid bilayers. J Membr Biol 185:83–92 [CrossRef]
    [Google Scholar]
  6. Andersen C, Koronakis E, Bokma E, Eswaran J, Humphreys D, Hughes C, Koronakis V. 2002b; Transition to the open state of the TolC periplasmic tunnel entrance. Proc Natl Acad Sci U S A 99:11103–11108 [CrossRef]
    [Google Scholar]
  7. Andersen C, Koronakis E, Hughes C, Koronakis V. 2002c; An aspartate ring at the TolC tunnel entrance determines ion selectivity and presents a target for blocking by large cations. Mol Microbiol 44:1131–1139 [CrossRef]
    [Google Scholar]
  8. Benz R, Janko K, Boos W, Lauger P. 1978; Formation of large, ion-permeable membrane channels by the matrix protein (porin) of Escherichia coli . Biochim Biophys Acta 511:305–319 [CrossRef]
    [Google Scholar]
  9. Benz R, Schmid A, Hancock R. E. 1985; Ion selectivity of gram-negative bacterial porins. J Bacteriol 162:722–727
    [Google Scholar]
  10. Binet R, Wandersman C. 1996; Cloning of the Serratia marcescens hasF gene encoding the Has ABC exporter outer membrane component: a TolC analogue. Mol Microbiol 22:265–273 [CrossRef]
    [Google Scholar]
  11. Blum H, Beier H, Gross H. J. 1987; Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99 [CrossRef]
    [Google Scholar]
  12. Borges-Walmsley M. I, McKeegan K. S, Walmsley A. R. 2003; Structure and function of efflux pumps that confer resistance to drugs. Biochem J 376:313–338 [CrossRef]
    [Google Scholar]
  13. da Silva F. G, Shen Y, Dardick C, Burdman S, Yadav R. C, Ronald P. C, de Leon A. L. 2004; Bacterial genes involved in type I secretion and sulfation are required to elicit the rice Xa21-mediated innate immune response. Mol Plant Microbe Interact 17:593–601 [CrossRef]
    [Google Scholar]
  14. Datsenko K. A, Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [CrossRef]
    [Google Scholar]
  15. Dean C. R, Narayan S, Daigle D. M. 8 other authors 2005; Role of the AcrAB-TolC efflux pump in determining susceptibility of Haemophilus influenzae to the novel peptide deformylase inhibitor LBM415. Antimicrob Agents Chemother 49:3129–3135 [CrossRef]
    [Google Scholar]
  16. Delepelaire P. 2004; Type I secretion in gram-negative bacteria. Biochim Biophys Acta 1694:149–161 [CrossRef]
    [Google Scholar]
  17. Eswaran J, Hughes C, Koronakis V. 2003; Locking TolC entrance helices to prevent protein translocation by the bacterial type I export apparatus. J Mol Biol 327:309–315 [CrossRef]
    [Google Scholar]
  18. Federici L, Du D, Walas F, Matsumura H, Fernandez-Recio J, McKeegan K. S, Borges-Walmsley M. I, Luisi B. F, Walmsley A. R. 2005; The crystal structure of the outer membrane protein VceC from the bacterial pathogen Vibrio cholerae at 1.8 Å resolution. J Biol Chem 280:15307–15314 [CrossRef]
    [Google Scholar]
  19. Funkhouser A, Steinhoff M. C, Ward J. 1991; Haemophilus influenzae disease and immunization in developing countries. Rev Infect Dis 13:S542–S554 [CrossRef]
    [Google Scholar]
  20. Jellen-Ritter A. S, Kern W. V. 2001; Enhanced expression of the multidrug efflux pumps AcrAB and AcrEF associated with insertion element transposition in Escherichia coli mutants selected with a fluoroquinolone. Antimicrob Agents Chemother 45:1467–1472 [CrossRef]
    [Google Scholar]
  21. Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C. 2000; Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405:914–919 [CrossRef]
    [Google Scholar]
  22. Koronakis V, Eswaran J, Hughes C. 2004; Structure and function of TolC: the bacterial exit duct for proteins and drugs. Annu Rev Biochem 73:467–489 [CrossRef]
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  24. Letoffe S, Ghigo J. M, Wandersman C. 1994; Secretion of the Serratia marcescens HasA protein by an ABC transporter. J Bacteriol 176:5372–5377
    [Google Scholar]
  25. Lomovskaya O, Lewis K. 1992; Emr, an Escherichia coli locus for multidrug resistance. Proc Natl Acad Sci U S A 89:8938–8942 [CrossRef]
    [Google Scholar]
  26. Nikaido H. 1994; Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264:382–388 [CrossRef]
    [Google Scholar]
  27. Paulsen I. T, Nguyen L, Sliwinski M. K, Rabus R, Saier M. H. Jr 2000; Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. J Mol Biol 301:75–100 [CrossRef]
    [Google Scholar]
  28. Poole K. 2005; Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 56:20–51 [CrossRef]
    [Google Scholar]
  29. Prilipov A, Phale P. S, Van Gelder P, Rosenbusch J. P, Koebnik R. 1998; Coupling site-directed mutagenesis with high-level expression: large scale production of mutant porins from E. coli . FEMS Microbiol Lett 163:65–72 [CrossRef]
    [Google Scholar]
  30. Sanchez L, Pan W, Vinas M, Nikaido H. 1997; The acrAB homolog of Haemophilus influenzae codes for a functional multidrug efflux pump. J Bacteriol 179:6855–6857
    [Google Scholar]
  31. Schulein R, Gentschev I, Mollenkopf H. J, Goebel W. 1992; A topological model for the haemolysin translocator protein HlyD. Mol Gen Genet 234:155–163
    [Google Scholar]
  32. Tikhonova E. B, Wang Q, Zgurskaya H. I. 2002; Chimeric analysis of the multicomponent multidrug efflux transporters from gram-negative bacteria. J Bacteriol 184:6499–6507 [CrossRef]
    [Google Scholar]
  33. Trepod C. M, Mott J. E. 2004; Identification of the Haemophilus influenzae tolC gene by susceptibility profiles of insertionally inactivated efflux pump mutants. Antimicrob Agents Chemother 48:1416–1418 [CrossRef]
    [Google Scholar]
  34. Turk D. C. 1984; The pathogenicity of Haemophilus influenzae . J Med Microbiol 18:1–16 [CrossRef]
    [Google Scholar]
  35. Wandersman C, Delepelaire P. 1990; TolC, an Escherichia coli outer membrane protein required for hemolysin secretion. Proc Natl Acad Sci U S A 87:4776–4780 [CrossRef]
    [Google Scholar]
  36. Wong K. K, Brinkman F. S, Benz R. S, Hancock R. E. 2001; Evaluation of a structural model of Pseudomonas aeruginosa outer membrane protein OprM, an efflux component involved in intrinsic antibiotic resistance. J Bacteriol 183:367–374 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28805-0
Loading
/content/journal/micro/10.1099/mic.0.28805-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed