1887

Abstract

The nitrite reductase and nitric oxide reductase regulator (NNR) from activates transcription in response to nitric oxide (NO). The mechanism of NO sensing has not been elucidated for NNR, or for any of its orthologues from the FNR/CRP family of transcriptional regulators. Using regulated expression of the gene in , evidence has now been obtained to indicate that activation of NNR by NO does not require synthesis of the NNR polypeptide. In anaerobic cultures, NNR is inactivated slowly following removal of the source of NO. In contrast, exposure of anaerobically grown cultures to oxygen causes rapid inactivation of NNR, suggesting that the protein is inactivated directly by oxygen. By random and site-directed mutagenesis, two variants of NNR were isolated (with substitutions of arginine at position 80) that show high levels of activity in anaerobic cultures in the absence of NO. These proteins remain substantially inactive in aerobic cultures, suggesting that the substitutions uncouple the NO- and oxygen-signalling mechanisms, thus providing further evidence that NNR senses both molecules. Structural modelling suggested that Arg-80 is close to the C-helix that forms the monomer–monomer interface in other members of the FNR/CRP family and plays an important role in transducing the activating signal between the regulatory and DNA binding domains. Assays of NNR activity in a haem-deficient mutant of provided preliminary evidence to indicate that NNR activity is haem dependent.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28796-0
2006-05-01
2019-09-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/5/1461.html?itemId=/content/journal/micro/10.1099/mic.0.28796-0&mimeType=html&fmt=ahah

References

  1. Aono, S., Matsuo, T., Shimono, T., Ohkubo, K., Takasaki, H. & Nakajima, H. ( 1997; ). Single transduction in the transcriptional activator CooA containing a heme-based CO sensor: isolation of a dominant positive mutant which is active as the transcriptional activator even in the absence of CO. Biochem Biophys Res Commun 240, 783–786.[CrossRef]
    [Google Scholar]
  2. Baker, S. C., Ferguson, S. J., Ludwig, B., Page, M. D., Richter, O. M. & van Spanning, R. J. ( 1998; ). Molecular genetics of the genus Paracoccus: metabolically versatile bacteria with bioenergetic flexibility. Microbiol Mol Biol Rev 62, 1046–1078.
    [Google Scholar]
  3. Bates, D. M., Popescu, C. V., Khoroshilova, N., Vogt, K., Beinert, H., Munck, E. & Kiley, P. J. ( 2000; ). Substitution of leucine 28 with histidine in the Escherichia coli transcription factor FNR results in increased stability of the [4Fe-4S](2+) cluster to oxygen. J Biol Chem 275, 6234–6240.[CrossRef]
    [Google Scholar]
  4. Bates, P. A., Kelley, L. A., MacCallum, R. M. & Sternberg, M. J. ( 2001; ). Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. Proteins 39–46.
    [Google Scholar]
  5. Baumann, B., Snozzi, M., Zehnder, A. & Van Der Meer, J. ( 1996; ). Dynamics of denitrification activity of Paracoccus denitrificans in continuous culture during aerobic-anaerobic changes. J Bacteriol 178, 4367–4374.
    [Google Scholar]
  6. Busby, S. & Ebright, R. H. ( 1999; ). Transcription activation by catabolite activator protein (CAP). J Mol Biol 293, 199–213.[CrossRef]
    [Google Scholar]
  7. Constantinidou, C., Hobman, J. L., Griffiths, L., Patel, M. D., Penn, C. W., Cole, J. A. & Overton, T. W. ( 2006; ). A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL and NarQP as Escherichia coli K-12 adapts from aerobic to anaerobic growth. J Biol Chem 281, 4802–4815.[CrossRef]
    [Google Scholar]
  8. Corker, H. & Poole, R. K. ( 2003; ). Nitric oxide formation by Escherichia coli: dependence on nitrite reductase, the NO-sensing regulator Fnr, and flavohemoglobin Hmp. J Biol Chem 278, 31584–31592.[CrossRef]
    [Google Scholar]
  9. De Groote, M. A., Granger, D., Xu, Y., Campbell, G., Prince, R. & Fang, F. C. ( 1995; ). Genetic and redox determinants of nitric oxide cytotoxicity in a Salmonella typhimurium model. Proc Natl Acad Sci U S A 92, 6399–6403.[CrossRef]
    [Google Scholar]
  10. Elliott, T. & Roth, J. R. ( 1989; ). Heme-deficient mutants of Salmonella typhimurium: two genes required for ALA synthesis. Mol Gen Genet 216, 303–314.[CrossRef]
    [Google Scholar]
  11. Gardner, A. M. & Gardner, P. R. ( 2002; ). Flavohemoglobin detoxifies nitric oxide in aerobic, but not anaerobic, Escherichia coli. Evidence for a novel inducible anaerobic nitric oxide-scavenging activity. J Biol Chem 277, 8166–8171.[CrossRef]
    [Google Scholar]
  12. Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. ( 1995; ). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177, 4121–4130.
    [Google Scholar]
  13. Hasegawa, N., Arai, H. & Igarashi, Y. ( 1998; ). Activation of a consensus FNR-dependent promoter by DNR of Pseudomonas aeruginosa in response to nitrite. FEMS Microbiol Lett 166, 213–217.[CrossRef]
    [Google Scholar]
  14. Hutchings, M. I., Shearer, N., Wastell, S., van Spanning, R. J. & Spiro, S. ( 2000; ). Heterologous NNR-mediated nitric oxide signaling in Escherichia coli. J Bacteriol 182, 6434–6439.[CrossRef]
    [Google Scholar]
  15. Jahn, D., Michelsen, U. & Soll, D. ( 1991; ). Two glutamyl-tRNA reductase activities in Escherichia coli. J Biol Chem 266, 2542–2548.
    [Google Scholar]
  16. Ji, X. B. & Hollocher, T. C. ( 1988; ). Reduction of nitrite to nitric oxide by enteric bacteria. Biochem Biophys Res Commun 157, 106–108.[CrossRef]
    [Google Scholar]
  17. Kerby, R. L., Youn, H., Thorsteinsson, M. V. & Roberts, G. P. ( 2003; ). Repositioning about the dimer interface of the transcription regulator CooA: a major signal transduction pathway between the effector and DNA-binding domains. J Mol Biol 325, 809–823.[CrossRef]
    [Google Scholar]
  18. Korner, H., Sofia, H. J. & Zumft, W. G. ( 2003; ). Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 27, 559–592.[CrossRef]
    [Google Scholar]
  19. Kwiatkowski, A. V. & Shapleigh, J. P. ( 1996; ). Requirement of nitric oxide for induction of genes whose products are involved in nitric oxide metabolism in Rhodobacter sphaeroides 2.4.3. J Biol Chem 271, 24382–24388.[CrossRef]
    [Google Scholar]
  20. Lamberg, K. E., Luther, C., Weber, K. D. & Kiley, P. J. ( 2002; ). Characterization of activating region 3 from Escherichia coli FNR. J Mol Biol 315, 275–283.[CrossRef]
    [Google Scholar]
  21. Lanzilotta, W. N., Schuller, D. J., Thorsteinsson, M. V., Kerby, R. L., Roberts, G. P. & Poulos, T. L. ( 2000; ). Structure of the CO sensing transcription activator CooA. Nat Struct Biol 7, 876–880.[CrossRef]
    [Google Scholar]
  22. Laratta, W. P. & Shapleigh, J. P. ( 2003; ). Site-directed mutagenesis of NnrR: a transcriptional regulator of nitrite and nitric oxide reductase in Rhodobacter sphaeroides. FEMS Microbiol Lett 229, 173–178.[CrossRef]
    [Google Scholar]
  23. Lazazzera, B. A., Bates, D. M. & Kiley, P. J. ( 1993; ). The activity of the Escherichia coli transcription factor FNR is regulated by a change in oligomeric state. Genes Dev 7, 1993–2005.[CrossRef]
    [Google Scholar]
  24. Li, B., Wing, H., Lee, D., Wu, H. C. & Busby, S. ( 1998; ). Transcription activation by Escherichia coli FNR protein: similarities to, and differences from, the CRP paradigm. Nucleic Acids Res 26, 2075–2081.[CrossRef]
    [Google Scholar]
  25. Martin, E., Sharina, I., Kots, A. & Murad, F. ( 2003; ). A constitutively activated mutant of human soluble guanylyl cyclase (sGC): implication for the mechanism of sGC activation. Proc Natl Acad Sci U S A 100, 9208–9213.[CrossRef]
    [Google Scholar]
  26. Mesa, S., Bedmar, E. J., Chanfon, A., Hennecke, H. & Fischer, H.-M. (2003; ). Bradyrhizobium japonicum NnrR, a denitrification regulator, expands the FixLJ-FixK2 regulatory cascade. J Bacteriol 185, 3978–3982.[CrossRef]
    [Google Scholar]
  27. Miller, J. H. ( 1992; ). A Short Course in Bacterial Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  28. Moore, L. J. & Kiley, P. J. ( 2001; ). Characterization of the dimerization domain in the FNR transcription factor. J Biol Chem 276, 45744–45750.[CrossRef]
    [Google Scholar]
  29. Moore, J., Kantorow, M., Vanderzwaag, D. & McKenney, K. ( 1992; ). Escherichia coli cyclic AMP receptor protein mutants provide evidence for ligand contacts important in activation. J Bacteriol 174, 8030–8035.
    [Google Scholar]
  30. Notredame, C., Higgins, D. G. & Heringa, J. ( 2000; ). T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302, 205–217.[CrossRef]
    [Google Scholar]
  31. Page, M. D. & Ferguson, S. J. ( 1990; ). Apo forms of cytochrome c 550 and cytochrome cd 1 are translocated to the periplasm of Paracoccus denitrificans in the absence of haem incorporation caused either mutation or inhibition of haem synthesis. Mol Microbiol 4, 1181–1192.[CrossRef]
    [Google Scholar]
  32. Passner, J. M., Schultz, S. C. & Steitz, T. A. ( 2000; ). Modeling the cAMP-induced allosteric transition using the crystal structure of CAP-cAMP at 2·1 A resolution. J Mol Biol 304, 847–859.[CrossRef]
    [Google Scholar]
  33. Poole, R. K. & Hughes, M. N. ( 2000; ). New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol Microbiol 36, 775–783.[CrossRef]
    [Google Scholar]
  34. Spencer, M. E. & Guest, J. R. ( 1973; ). Isolation and properties of fumarate reductase mutants of Escherichia coli. J Bacteriol 114, 563–570.
    [Google Scholar]
  35. Spencer, N. Y., Zeng, H., Patel, R. P. & Hogg, N. ( 2000; ). Reaction of S-nitrosoglutathione with the heme group of deoxyhemoglobin. J Biol Chem 275, 36562–36567.[CrossRef]
    [Google Scholar]
  36. Thorsteinsson, M. V., Kerby, R. L., Youn, H., Conrad, M., Serate, J., Staples, C. R. & Roberts, G. P. ( 2001; ). Redox-mediated transcriptional activation in a CooA variant. J Biol Chem 276, 26807–26813.[CrossRef]
    [Google Scholar]
  37. Van Doorslaer, S., Dewilde, S., Kiger, L., Nistor, S. V., Goovaerts, E., Marden, M. C. & Moens, L. ( 2003; ). Nitric oxide binding properties of neuroglobin. A characterization by EPR and flash photolysis. J Biol Chem 278, 4919–4925.[CrossRef]
    [Google Scholar]
  38. Van Spanning, R. J., De Boer, A. P., Reijnders, W. N., Spiro, S., Westerhoff, H. V., Stouthamer, A. H. & Van der Oost, J. ( 1995; ). Nitrite and nitric oxide reduction in Paracoccus denitrificans is under the control of NNR, a regulatory protein that belongs to the FNR family of transcriptional activators. FEBS Lett 360, 151–154.[CrossRef]
    [Google Scholar]
  39. Van Spanning, R. J., De Boer, A. P., Reijnders, W. N., Westerhoff, H. V., Stouthamer, A. H. & Van Der Oost, J. ( 1997; ). FnrP and NNR of Paracoccus denitrificans are both members of the FNR family of transcriptional activators but have distinct roles in respiratory adaptation in response to oxygen limitation. Mol Microbiol 23, 893–907.[CrossRef]
    [Google Scholar]
  40. Van Spanning, R. J., Houben, E., Reijnders, W. N., Spiro, S., Westerhoff, H. V. & Saunders, N. ( 1999; ). Nitric oxide is a signal for NNR-mediated transcription activation in Paracoccus denitrificans. J Bacteriol 181, 4129–4132.
    [Google Scholar]
  41. Vollack, K. U. & Zumft, W. G. ( 2001; ). Nitric oxide signaling and transcriptional control of denitrification genes in Pseudomonas stutzeri. J Bacteriol 183, 2516–2526.[CrossRef]
    [Google Scholar]
  42. Vollack, K. U., Hartig, E., Korner, H. & Zumft, W. G. ( 1999; ). Multiple transcription factors of the FNR family in denitrifying Pseudomonas stutzeri: characterization of four fnr-like genes, regulatory responses and cognate metabolic processes. Mol Microbiol 31, 1681–1694.[CrossRef]
    [Google Scholar]
  43. Watmough, N. J., Butland, G., Cheesman, M. R., Moir, J. W., Richardson, D. J. & Spiro, S. ( 1999; ). Nitric oxide in bacteria: synthesis and consumption. Biochim Biophys Acta 1411, 456–474.[CrossRef]
    [Google Scholar]
  44. Youn, H., Kerby, R. L., Thorsteinsson, M. V., Clark, R. W., Burstyn, J. N. & Roberts, G. P. ( 2002; ). Analysis of the L116K variant of CooA, the heme-containing CO sensor, suggests the presence of an unusual heme ligand resulting in novel activity. J Biol Chem 277, 33616–33623.[CrossRef]
    [Google Scholar]
  45. Zumft, W. G. ( 1997; ). Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61, 533–616.
    [Google Scholar]
  46. Zumft, W. G. ( 2002; ). Nitric oxide signaling and NO dependent transcriptional control in bacterial denitrification by members of the FNR-CRP regulator family. J Mol Microbiol Biotechnol 4, 277–286.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28796-0
Loading
/content/journal/micro/10.1099/mic.0.28796-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error