1887

Abstract

BN6 degrades various (substituted) naphthalenesulfonates to the corresponding (substituted) salicylates. A gene cluster was identified on the plasmid pBN6 which coded for several enzymes participating in the degradative pathway for naphthalenesulfonates. A DNA fragment of 16 915 bp was sequenced which contained 17 ORFs. The genes encoding the 1,2-dihydroxynaphthalene dioxygenase, 2-hydroxychromene-2-carboxylate isomerase, and 2′-hydroxybenzalpyruvate aldolase of the naphthalenesulfonate pathway were identified on the DNA fragment and the encoded proteins heterologously expressed in . Also, the genes encoding the ferredoxin and ferredoxin reductase of a multi-component, ring-hydroxylating naphthalenesulfonate dioxygenase were identified by insertional inactivation. The identified genes generally demonstrated the highest degree of homology to enzymes encoded by the phenanthrene-degrading organism sp. P2, or the megaplasmid pNL1 of the naphthalene- and biphenyl-degrading strain F199. The genes of BN6 participating in the degradation of naphthalenesulfonates also shared the same organization in three different transcriptional units as the genes involved in the degradation of naphthalene, biphenyl, and phenanthrene previously found in sp. P2 and F199. The genes were flanked in BN6 by ORFs which specify proteins that show the highest homologies to proteins of mobile genetic elements.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28783-0
2006-07-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/7/1929.html?itemId=/content/journal/micro/10.1099/mic.0.28783-0&mimeType=html&fmt=ahah

References

  1. Alonso, M. C., Castillo, M. & Barceló, D. ( 1999; ). Solid-phase extraction procedure of polar benzene- and naphthalenesulfonates in industrial effluents followed by unequivocal determination with ion-pair chromatography/electrospray-mass spectrometry. Anal Chem 71, 2586–2593.[CrossRef]
    [Google Scholar]
  2. Altenbuchner, J. ( 1993; ). A new λ RES vector with a built-in Tn1721-encoded excision system. Gene 123, 63–68.[CrossRef]
    [Google Scholar]
  3. Altenbuchner, J., Vieill, P. & Pelletier, I. ( 1992; ). Positive selection vectors based on palindromic DNA sequences. Methods Enzymol 216, 457–466.
    [Google Scholar]
  4. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipmann, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  5. Basta, T., Keck, A., Klein, J. & Stolz, A. ( 2004; ). Detection and characterization of conjugative degradative plasmids in xenobiotics-degrading Sphingomonas strains. J Bacteriol 186, 3862–3872.[CrossRef]
    [Google Scholar]
  6. Basta, T., Bürger, S. & Stolz, A. ( 2005; ). Structural and replicative diversity of large plasmids from sphingomonads that degrade polycyclic aromatic compounds and xenobiotics. Microbiology 151, 2025–2037.[CrossRef]
    [Google Scholar]
  7. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  8. Brilon, C., Beckmann, W. & Knackmuss, H. J. ( 1981a; ). Catabolism of naphthalenesulfonic acids by Pseudomonas sp. A3 and Pseudomonas sp. C22. Appl Environ Microbiol 42, 44–55.
    [Google Scholar]
  9. Brilon, C., Beckmann, W., Hellwig, M. & Knackmuss, H. J. ( 1981b; ). Enrichment and isolation of naphthalenesulfonic acid-utilizing pseudomonads. Appl Environ Microbiol 42, 39–43.
    [Google Scholar]
  10. Chung, C. T., Niemela, S. L. & Miller, R. H. ( 1989; ). One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 86, 2172–2175.[CrossRef]
    [Google Scholar]
  11. Demanèche, S., Meyer, C., Micoud, J., Louwagie, M., Willison, J. C. & Jouanneau, Y. ( 2004; ). Identification and functional analysis of two aromatic-ring-hydroxylating dioxygenases from a Sphingomonas strain that degrades various polycyclic aromatic hydrocarbons. Appl Environ Microbiol 70, 6714–6725.[CrossRef]
    [Google Scholar]
  12. Dorn, E., Hellwig, M., Reinecke, W. & Knackmuss, H.-J. ( 1974; ). Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol 99, 61–70.[CrossRef]
    [Google Scholar]
  13. Feng, X. & Ogram, A. ( 1997; ). Plasmid mediated mineralization of carbofuran by Sphingomonas sp. strain CF06. Appl Environ Microbiol 63, 1332–1337.
    [Google Scholar]
  14. Gish, W. & States, D. J. ( 1993; ). Identification of protein coding regions by database similarity search. Nat Genet 3, 266–272.[CrossRef]
    [Google Scholar]
  15. Heiss, G., Stolz, A., Kuhm, A. E., Müller, C., Klein, J., Altenbuchner, J. & Knackmuss, H.-J. ( 1995; ). Characterization of a 2,3-dihydroxybiphenyl dioxygenase from the naphthalenesulfonate-degrading bacterium strain BN6. J Bacteriol 177, 5865–5871.
    [Google Scholar]
  16. Heiss, G., Müller, C., Altenbuchner, J. & Stolz, A. ( 1997; ). Analysis of a new dimeric extradiol dioxygenase from a naphthalenesulfonate-degrading sphingomonad. Microbiology 143, 1691–1699.[CrossRef]
    [Google Scholar]
  17. Hils, M. ( 1998; ). Mutanten der D-Carbamoylase zur Bildung aktiven Enzyms bei Expression des Gens in Escherichia coli und Analyse eines Genclusters für die Enzyme des Hydantoin-Abbaus aus Agrobacterium sp. I-671. PhD thesis, University of Stuttgart.
  18. Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K. & Pease, L. R. ( 1989; ). Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61–68.[CrossRef]
    [Google Scholar]
  19. Keck, A., Klein, J., Kudlich, M., Stolz, A., Knackmuss, H.-J. & Mattes, R. ( 1997; ). Reduction of azo dyes by redox mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. BN6. Appl Environ Microbiol 63, 3684–3690.
    [Google Scholar]
  20. Keck, A., Rau, J., Reemtsma, T., Mattes, R., Stolz, A. & Klein, J. ( 2002; ). Identification of quinoide redox mediators that are formed during the degradation of naphthalene-2-sulfonate by Sphingomonas xenophaga BN6. Appl Environ Microbiol 68, 4341–4349.[CrossRef]
    [Google Scholar]
  21. Kieser, T. ( 1984; ). Factors affecting the isolation of CCC DNA from Streptomyces lividans and Escherichia coli. Plasmid 12, 19–36.[CrossRef]
    [Google Scholar]
  22. Kim, E. & Zylstra, G. J. ( 1999; ). Functional analysis of genes involved in biphenyl, naphthalene, phenanthrene, and m-xylene degradation by Sphingomonas yanoikuyae B1. J Ind Microbiol Biotechnol 23, 294–302.[CrossRef]
    [Google Scholar]
  23. Kim, E., Aversano, P. J., Romine, M. F., Schneider, R. P. & Zylstra, G. J. ( 1996; ). Homology between genes for aromatic hydrocarbon degradation in surface and deep-subsurface Sphingomonas strains. Appl Environ Microbiol 62, 1467–1470.
    [Google Scholar]
  24. Kuhm, A. E., Stolz, A. & Knackmuss, H.-J. ( 1991a; ). Metabolism of naphthalene by the biphenyl-degrading bacterium Pseudomonas paucimobilis Q1. Biodegradation 2, 115–120.[CrossRef]
    [Google Scholar]
  25. Kuhm, A. E., Stolz, A., Ngai, K.-L. & Knackmuss, H.-J. ( 1991b; ). Purification and characterization of a 1,2-dihydroxynaphthalene dioxygenase from a bacterium that degrades naphthalenesulfonic acids. J Bacteriol 173, 3795–3802.
    [Google Scholar]
  26. Kuhm, A. E., Knackmuss, H.-J. & Stolz, A. ( 1992; ). Purification and properties of 2′-hydroxybenzalpyruvate aldolase from a bacterium that degrades naphthalenesulfonates. J Biol Chem 268, 9484–9489.
    [Google Scholar]
  27. Kuhm, A. E., Knackmuss, H.-J. & Stolz, A. ( 1993; ). 2-Hydroxychromene-2-carboxylate isomerase from bacteria that degrade naphthalenesulfonates. Biodegradation 4, 155–162.[CrossRef]
    [Google Scholar]
  28. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  29. Nicholas, K. B. & Nicholas, H. B., Jr ( 1996; ). genedoc: a tool for editing and annotating multiple sequence alignments. Distributed by the author per anonymous ftp (http://www.psc.edu/biomed/genedoc).
  30. Nörtemann, B., Baumgarten, J., Rast, H. G. & Knackmuss, H.-J. ( 1986; ). Bacterial communities degrading amino- and hydroxynaphthalene-2-sulfonates. Appl Environ Microbiol 52, 1195–1201.
    [Google Scholar]
  31. Nörtemann, B., Kuhm, A. E., Knackmuss, H.-J. & Stolz, A. ( 1994; ). Conversion of substituted naphthalenesulfonates by Pseudomonas sp. BN6. Arch Microbiol 161, 320–327.[CrossRef]
    [Google Scholar]
  32. Ochman, H., Gerber, A. S. & Hartl, D. L. ( 1988; ). Genetic applications of inverse polymerase chain reaction. Genetics 120, 621–623.
    [Google Scholar]
  33. Ohe, T. & Watanabe, Y. ( 1986; ). Degradation of 2-naphthylamine-1-sulfonic acid by Pseudomonas strain TA-1. Agric Biol Chem 50, 1419–1425.[CrossRef]
    [Google Scholar]
  34. Ohe, T. & Watanabe, Y. ( 1988; ). Microbial degradation of 1,6- and 2,6-naphthalenedisulfonic acid by Pseudomonas sp. DS-1. Agric Biol Chem 52, 2409–2414.[CrossRef]
    [Google Scholar]
  35. Pinyakong, O., Habe, H. & Omori, T. ( 2003a; ). The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J Gen Appl Microbiol 49, 1–19.[CrossRef]
    [Google Scholar]
  36. Pinyakong, O., Habe, H., Yoshida, T., Nojiri, H. & Omori, T. ( 2003b; ). Identification of three isofunctional novel salicylate 1-hydroxylases involved in the phenanthrene degradation of Sphingobium sp. strain P2. Biochem Biophys Res Commun 201, 350–357.
    [Google Scholar]
  37. Riediker, S., Suter, M. J.-F. & Giger, W. ( 2000; ). Benzene- and naphthalenesulfonates in leachates and plumes of landfills. Wat Res 34, 2069–2079.[CrossRef]
    [Google Scholar]
  38. Romine, M. F., Stillwell, L. C., Wong, K. K., Thurston, S. J., Sisk, E. C., Sensen, C., Gaasterland, T., Fredrickson, J. K. & Saffer, J. D. ( 1999; ). Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J Bacteriol 181, 1585–1602.
    [Google Scholar]
  39. Ruckstuhl, S. M., Suter, J.-F., Kohler, H.-P. E. & Giger, W. ( 2002; ). Leaching and primary biodegradation of sulfonated naphthalenes and their formaldehyde condensates from concrete superplasticizers in groundwater affected by tunnel construction. Environ Sci Technol 36, 3284–3289.[CrossRef]
    [Google Scholar]
  40. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  41. Simon, R., Priefer, U. & Pühler, A. ( 1983; ). A broad-host-range mobilization system for in vivo genetic engineering and transposon mutagenesis in gram-negative bacteria. Bio/Technology 1, 784–791.[CrossRef]
    [Google Scholar]
  42. Stolz, A. ( 1999; ). Degradation of substituted naphthalenesulfonic acids by Sphingomonas xenophaga BN6. J Ind Microbiol Biotechnol 23, 391–399.[CrossRef]
    [Google Scholar]
  43. Stolz, A., Schmidt-Maag, C., Denner, E. B. M., Busse, H.-J., Egli, T. & Kämpfer, P. ( 2000; ). Description of Sphingomonas xenophaga sp.nov for strains BN6T and N,N which degrade xenobiotic aromatic compounds. Int J Syst Bacteriol 50, 35–41.[CrossRef]
    [Google Scholar]
  44. Thomson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  45. Tully, P. S. ( 1997; ). Sulfonic acids. In Kirk–Othmer Encylopedia of Chemical Technology, 4th edn, vol. 23, pp. 194–217. New York: Wiley.
  46. Vieira, J. & Messing, J. ( 1982; ). The pUC plasmids and M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19, 259–268.[CrossRef]
    [Google Scholar]
  47. Volff, J.-N., Eichenseer, C., Viell, P., Piendl, W. & Altenbuchner, J. ( 1996; ). Nucleotide sequence and role in DNA amplification of the direct repeats composing the amplifiable element AUD1 of Streptomyces lividans 66. Mol Microbiol 21, 1037–1047.[CrossRef]
    [Google Scholar]
  48. Wada, K., Wada, Y., Ishibashi, F., Gojobori, T. & Ikemura, T. ( 1992; ). Codon usage tabulated from the Genbank genetic sequence data. Nucleic Acids Res 20, 2111–2118.[CrossRef]
    [Google Scholar]
  49. Wellens, H. ( 1990; ). Zur biologischen Abbaubarkeit mono- und disubstituierter Benzolderivate. Z Wasser-Abwasser Forsch 23, 85–98.
    [Google Scholar]
  50. Wittich, R. M., Rast, H. G. & Knackmuss, H.-J. ( 1988; ). Degradation of naphthalene-2,6- and naphthalene-1,6-disulfonic acid by a Moraxella sp. Appl Environ Microbiol 54, 1842–1847.
    [Google Scholar]
  51. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC vectors. Gene 33, 103–119.[CrossRef]
    [Google Scholar]
  52. Zürrer, D., Cook, A. M. & Leisinger, T. ( 1987; ). Microbial desulfonation of substituted naphthalenesulfonic acids and benzenesulfonic acids. Appl Environ Microbiol 53, 1459–1463.
    [Google Scholar]
  53. Zylstra, G. J. & Kim, E. ( 1997; ). Aromatic hydrocarbon degradation by Sphingomonas yanoikuyae B1. J Ind Microbiol Biotechnol 19, 408–414.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28783-0
Loading
/content/journal/micro/10.1099/mic.0.28783-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error