1887

Abstract

strain PHL628 was subjected to saturating Tn transposon mutagenesis and then grown under competitive planktonic or biofilm conditions. The locations of transposon insertions from the remaining cells were then mapped on a gene array. The results from the array mapping indicated that 4.5 % of the genome was important under these conditions. Specifically, 114 genes were identified as important for the biofilm lifestyle, whereas 80 genes were important for the planktonic lifestyle. Four broad functional categories were identified as biofilm-important. These included genes encoding cell structures, small-molecule transport, energy metabolism and regulatory functions. For one of these genes, , an insertion mutant was generated and its biofilm-related phenotype was examined. Results from both the transposon array and insertion mutagenesis indicated that , which is known to be a negative response regulator of genes in aerobic pathways, was important for competitiveness in PHL628 biofilms. This work also demonstrated that ligation-mediated PCR, coupled with array-based transposon mapping, was an effective tool for identifying a large variety of candidate genes that are important for biofilm fitness.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28767-0
2006-08-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/8/2233.html?itemId=/content/journal/micro/10.1099/mic.0.28767-0&mimeType=html&fmt=ahah

References

  1. Alexeeva, S., de Kort, B., Sawers, G., Hellingwerf, K. J. & de Mattos, M. J. ( 2000; ). Effects of limited aeration and of the ArcAB system on intermediary pyruvate catabolism in Escherichia coli. J Bacteriol 182, 4934–4940.[CrossRef]
    [Google Scholar]
  2. Almiron, M., Link, A. J., Furlong, D. & Kolter, R. ( 1992; ). A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev 6, 2646–2654.[CrossRef]
    [Google Scholar]
  3. Andersen, J. B., Sternberg, C., Poulsen, L. K., Bjorn, S. P., Givskov, M. & Molin, S. ( 1998; ). New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64, 2240–2246.
    [Google Scholar]
  4. Andrews, S. C., Robinson, A. K. & Rodriguez-Quinones, F. ( 2003; ). Bacterial iron homeostasis. FEMS Microbiol Rev 27, 215–237.[CrossRef]
    [Google Scholar]
  5. Badarinarayana, V., Estep, P. W., III, Shendure, J., Edwards, J., Tavazoie, S., Lam, F. & Church, G. M. ( 2001; ). Selection analysis of insertional mutants using subgenic-resolution arrays. Nat Biotechnol 19, 1060–1065.[CrossRef]
    [Google Scholar]
  6. Beloin, C., Valle, J., Latour-Lambert, P. & 8 other authors ( 2004; ). Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51, 659–674.
    [Google Scholar]
  7. Blasco, F., Iobbi, C., Ratouchniak, J., Bonnefoy, V. & Chippaux, M. ( 1990; ). Nitrate reductases of Escherichia coli: sequence of the second nitrate reductase and comparison with that encoded by the narGHJI operon. Mol Gen Genet 222, 104–111.
    [Google Scholar]
  8. Blasco, F., Pommier, J., Augier, V., Chippaux, M. & Giordano, G. ( 1992; ). Involvement of the narJ or narW gene product in the formation of active nitrate reductase in Escherichia coli. Mol Microbiol 6, 221–230.[CrossRef]
    [Google Scholar]
  9. Blattner, F. R., Plunketti, G. I., Bloch, C. A. & 14 other authors ( 1997; ). The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1462.[CrossRef]
    [Google Scholar]
  10. Bost, S., Silva, F. & Belin, D. ( 1999; ). Transcriptional activation of ydeA, which encodes a member of the major facilitator superfamily, interferes with arabinose accumulation and induction of the Escherichia coli arabinose PBAD promoter. J Bacteriol 181, 2185–2191.
    [Google Scholar]
  11. Buxton, R. S. & Drury, L. S. ( 1983; ). Cloning and insertional inactivation of the dye (sfrA) gene, mutation of which affects sex factor F expression and dye sensitivity of Escherichia coli K-12. J Bacteriol 154, 1309–1314.
    [Google Scholar]
  12. Carlin, A., Shi, W., Dey, S. & Rosen, B. P. ( 1995; ). The ars operon of Escherichia coli confers arsenical and antimonial resistance. J Bacteriol 177, 981–986.
    [Google Scholar]
  13. Conway, T., Kraus, B., Tucker, D. L., Smalley, D. J., Dorman, A. F. & McKibben, L. ( 2002; ). DNA array analysis in a Microsoft Windows environment. Biotechniques 32, 110–119.
    [Google Scholar]
  14. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. & Lappin, S. H. M. ( 1995; ). Microbial biofilms. Annu Rev Microbiol 1995, 711–745.
    [Google Scholar]
  15. De Kievit, T. R., Parkins, M. D., Gillis, R. J., Srikumar, R., Ceri, H., Poole, K., Iglewski, B. & Storey, D. G. ( 2001; ). Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 45, 1761–1770.[CrossRef]
    [Google Scholar]
  16. de Lorenzo, V., Herrero, M., Jakubzik, U. & Timmis, K. N. ( 1990; ). Mini-Tn5 transposon derivatives for insertion mutagenesis promoter probing and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172, 6568–6572.
    [Google Scholar]
  17. Dorel, C., Vidal, O., Prigent-Combaret, C., Vallet, I. & Lejeune, P. ( 1999; ). Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation. FEMS Microbiol Lett 178, 169–175.[CrossRef]
    [Google Scholar]
  18. Dubiel, M., Hsu, C. H., Chien, C. C., Mansfeld, F. & Newman, D. K. ( 2002; ). Microbial iron respiration can protect steel from corrosion. Appl Environ Microbiol 68, 1440–1445.[CrossRef]
    [Google Scholar]
  19. Eaglesham, B. S., Lion, L. W. & Ghiorse, W. C. ( 2004; ). An Aufwuchs chamber slide for high-resolution confocal laser scanning microscopy and stereo imaging of microbial communities in natural biofilms. Microb Ecol 47, 266–270.
    [Google Scholar]
  20. Eichler, K., Buchet, A., Lemke, R., Kleber, H. P. & Mandrand-Berthelot, M. A. ( 1996; ). Identification and characterization of the caiF gene encoding a potential transcriptional activator of carnitine metabolism in Escherichia coli. J Bacteriol 178, 1248–1257.
    [Google Scholar]
  21. Finelli, A., Gallant, C. V., Jarvi, K. & Burrows, L. L. ( 2003; ). Use of in-biofilm expression technology to identify genes involved in Pseudomonas aeruginosa biofilm development. J Bacteriol 185, 2700–2710.[CrossRef]
    [Google Scholar]
  22. Fong, S.-T., Camakaris, J. & Lee, B. T. ( 1995; ). Molecular genetics of a chromosomal locus involved in copper tolerance in Escherichia coli K-12. Mol Microbiol 15, 1127–1137.[CrossRef]
    [Google Scholar]
  23. Fujisaki, S., Ohnuma, S., Horiuchi, T., Takahashi, I., Tsukui, S., Nishimura, Y., Nishino, T., Kitabatake, M. & Inokuchi, H. ( 1996; ). Cloning of a gene from Escherichia coli that confers resistance to fosmidomycin as a consequence of amplification. Gene 175, 83–87.[CrossRef]
    [Google Scholar]
  24. Georgellis, D., Kwon, O. & Lin, E. C. C. ( 2001; ). Quinone as the redox signal for the Arc two-component system of bacteria. Science 292, 2314–2316.[CrossRef]
    [Google Scholar]
  25. Ghigo, J.-M. ( 2001; ). Natural conjugative plasmids induce bacterial biofilm development. Nature 412, 442–445.[CrossRef]
    [Google Scholar]
  26. Gillis, R. J., White, K. G., Choi, K.-H., Wagner, V. E., Schweizer, H. P. & Iglewski, B. H. ( 2005; ). Molecular basis of azithromycin-resistant Pseudomonas aeruginosa biofilms AAC.49.9.3858–3867.2005. Antimicrob Agents Chemother 49, 3858–3867.[CrossRef]
    [Google Scholar]
  27. Gophna, U., Oelschlaeger, T. A., Hacker, J. & Ron, E. Z. ( 2002; ). Role of fibronectin in curli-mediated internalization. FEMS Microbiol Lett 212, 55–58.[CrossRef]
    [Google Scholar]
  28. Hammar, M., Arnqvist, A., Bian, Z., Olsen, A. & Normark, S. ( 1995; ). Expression of two csg operons is required for production of fibronectin- and Congo red-binding curli polymers in Escherichia coli K-12. Mol Microbiol 18, 661–670.[CrossRef]
    [Google Scholar]
  29. Hassett, D. J., Ma, J.-F., Elkins, J. G. & 10 other authors ( 1999; ). Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol 34, 1082–1093.[CrossRef]
    [Google Scholar]
  30. Hay, A. G., Dees, P. M. & Sayler, G. S. ( 2001; ). Growth of a bacterial consortium on triclosan. FEMS Microbiol Ecol 36, 105–112.[CrossRef]
    [Google Scholar]
  31. Heydorn, A., Nielsen, A. T., Hentzer, M., Sternberg, C., Givskov, M., Ersboll, B. K. & Molin, S. ( 2000; ). Quantification of biofilm structures by the novel computer program comstat. Microbiology 146, 2395–2407.
    [Google Scholar]
  32. Jeong, W., Cha, M. K. & Kim, I. H. ( 2000; ). Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)/alkyl hydroperoxide peroxidase C (AhpC) family. J Biol Chem 275, 2924–2930.[CrossRef]
    [Google Scholar]
  33. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M. I. & Peterson, K. M. ( 1995; ). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175–176.[CrossRef]
    [Google Scholar]
  34. Levy, S. B. ( 2002; ). Active efflux, a common mechanism for biocide and antibiotic resistance. J Appl Microbiol 92 (Suppl), 65S–71S.
    [Google Scholar]
  35. Lomovskaya, O. L., Kidwell, J. P. & Matin, A. ( 1994; ). Characterization of the σ38-dependent expression of a core Escherichia coli starvation gene, pexB. J Bacteriol 176, 3928–3935.
    [Google Scholar]
  36. Metcalf, W. W., Jiang, W., Daniels, L. L., Kim, S. K., Haldimann, A. & Wanner, B. L. ( 1996; ). Conditionally replicative and conjugative plasmids carrying lacZ-α for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 35, 1–13.[CrossRef]
    [Google Scholar]
  37. Nair, S. & Finkel, S. E. ( 2004; ). Dps protects cells against multiple stresses during stationary phase. J Bacteriol 186, 4192–4198.[CrossRef]
    [Google Scholar]
  38. Niedhardt, F. C. ( 1996; ). Escherichia coli and Salmonella, 2nd edn. Washington, DC: American Society for Microbiology.
  39. Nishino, K. & Yamaguchi, A. ( 2001; ). Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 183, 5803–5812.[CrossRef]
    [Google Scholar]
  40. Oosthuizen, M. C., Steyn, B., Lindsay, D., Brozel, V. S. & von Holy, A. ( 2001; ). Novel method for the proteomic investigation of a dairy-associated Bacillus cereus biofilm. FEMS Microbiol Lett 194, 47–51.[CrossRef]
    [Google Scholar]
  41. Oshima, T., Aiba, H., Masuda, Y., Kanaya, S., Sugiura, M., Wanner, B. L., Mori, H. & Mizuno, T. ( 2002; ). Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol 46, 281–291.[CrossRef]
    [Google Scholar]
  42. O'Toole, G. A. & Kolter, R. ( 1998; ). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30, 295–304.[CrossRef]
    [Google Scholar]
  43. Polz, M. F. & Cavanaugh, C. M. ( 1998; ). Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 64, 3724–3730.
    [Google Scholar]
  44. Pratt, L. A. & Kolter, R. ( 1998; ). Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30, 285–293.[CrossRef]
    [Google Scholar]
  45. Prigent-Combaret, C. & Lejeune, P. ( 1999; ). Monitoring gene expression in biofilms. Methods Enzymol 310, 56–79.
    [Google Scholar]
  46. Reid, D. W. & Kirov, S. M. ( 2004; ). Iron, Pseudomonas aeruginosa and cystic fibrosis. Microbiology 150, 516.[CrossRef]
    [Google Scholar]
  47. Reisner, A., Haagensen, J. A. J., Schembri, M. A., Zechner, E. L. & Molin, S. ( 2003; ). Development and maturation of Escherichia coli K-12 biofilms. Mol Microbiol 48, 933–946.[CrossRef]
    [Google Scholar]
  48. Ren, D., Bedzyk, L., Thomas, S., Ye, R. W. & Wood, T. K. ( 2004; ). Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol 64, 515–524.[CrossRef]
    [Google Scholar]
  49. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  50. Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W. & Davies, D. G. ( 2002; ). Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184, 1140–1154.[CrossRef]
    [Google Scholar]
  51. Schembri, M. A., Kjaergaard, K. & Klemm, P. ( 2003; ). Global gene expression in Escherichia coli biofilms. Mol Microbiol 48, 253–267.[CrossRef]
    [Google Scholar]
  52. Schramm, A., de Beer, D., van den Heuvel, J. C., Ottengraf, S. & Amann, R. ( 1999a; ). Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: quantification by in situ hybridization and the use of microsensors. Appl Environ Microbiol 65, 3690–3696.
    [Google Scholar]
  53. Schramm, A., Santegoeds, C. M., Nielsen, H. K., Ploug, H., Wagner, M., Pribyl, M., Wanner, J., Amann, R. & de Beer, D. ( 1999b; ). On the occurrence of anoxic microniches, denitrification, and sulfate reduction in aerated activated sludge. Appl Environ Microbiol 65, 4189–4196.
    [Google Scholar]
  54. Sharma, V., Meganathan, R. & Hudspeth, M. E. ( 1993; ). Menaquinone (vitamin K2) biosynthesis: cloning, nucleotide sequence, and expression of the menC gene from Escherichia coli. J Bacteriol 175, 4917–4921.
    [Google Scholar]
  55. Simon, R., Priefer, U. & Puhler, A. ( 1983; ). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology 1, 784–791.[CrossRef]
    [Google Scholar]
  56. Slauch, J. M., Mahan, M. J. & Mekalanos, J. J. ( 1994; ). In vivo expression technology for selection of bacterial genes specifically induces in host tissues. Methods Enzymol 235, 481–492.
    [Google Scholar]
  57. Stewart, P. S. ( 2003; ). Diffusion in biofilms. J Bacteriol 185, 1485–1491.[CrossRef]
    [Google Scholar]
  58. Steyn, B., Oosthuizen, M. C., MacDonald, R., Theron, J. & Brozel, V. S. ( 2001; ). The use of glass wool as an attachment surface for studying phenotypic changes in Pseudomonas aeruginosa biofilms by two-dimensional gel electrophoresis. Proteomics 1, 871–879.[CrossRef]
    [Google Scholar]
  59. Tanabe, H., Yamasak, K., Furue, M. & 7 other authors ( 1997; ). Growth phase-dependent transcription of emrKY, a homolog of multidrug efflux emrAB genes of Escherichia coli, is induced by tetracycline. J Gen Appl Microbiol 43, 257–263.[CrossRef]
    [Google Scholar]
  60. Teitzel, G. M. & Parsek, M. R. ( 2003; ). Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69, 2313–2320.[CrossRef]
    [Google Scholar]
  61. Thormann, K. M., Saville, R. M., Shukla, S. & Spormann, A. M. ( 2005; ). Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms. J Bacteriol 187, 1014–1021.[CrossRef]
    [Google Scholar]
  62. Vidal, O., Longin, R., Prigent-Combaret, C., Dorel, C., Hooreman, M. & Lejeune, P. ( 1998; ). Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol 180, 2442–2449.
    [Google Scholar]
  63. Vilain, S., Cosette, P., Junter, G.-A. & Jouenne, T. ( 2002; ). Phosphate deprivation is associated with high resistance to latamoxef of gel-entrapped, sessile-like Escherichia coli cells. J Antimicrob Chemother 49, 315–320.[CrossRef]
    [Google Scholar]
  64. Wecke, J., Kersten, T., Madela, K., Moter, A., Goebel, U. B., Friedmann, A. & Bernimoulin, J. P. ( 2000; ). A novel technique for monitoring the development of bacterial biofilms in human periodontal pockets. FEMS Microbiol Lett 191, 95–101.[CrossRef]
    [Google Scholar]
  65. Whiteley, M., Bangera, M. G., Bumgarner, R. E., Parsek, M. R., Teitzel, G. M., Lory, S. & Greenberg, E. P. ( 2001; ). Gene expression in Pseudomonas aeruginosa biofilms. Nature 413, 860–864.[CrossRef]
    [Google Scholar]
  66. Williams, M. D., Ouyang, T. X. & Flickinger, M. C. ( 1994; ). Starvation-induced expression of SspA and SspB: the effects of a null mutation in sspA on Escherichia coli protein synthesis and survival during growth and prolonged starvation. Mol Microbiol 11, 1029–1043.[CrossRef]
    [Google Scholar]
  67. Xu, K. D., Stewart, P. S., Xia, F., Huang, C.-T. & McFeters, G. A. ( 1998; ). Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microbiol 64, 4035–4039.
    [Google Scholar]
  68. Yoon, S. S., Hennigan, R. F., Hilliard, G. M. & 17 other authors ( 2002; ). Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell 3, 593–603.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28767-0
Loading
/content/journal/micro/10.1099/mic.0.28767-0
Loading

Data & Media loading...

vol. , part 8, pp. 2233–2245

Supplementary material. [PDF file](215 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error