1887

Abstract

The physiological changes induced by indoleacetic acid (IAA) treatment were investigated in the totally sequenced K-12 MG1655. DNA macroarrays were used to measure the mRNA levels for all the 4290 protein-coding genes; 50 genes (1.1 %) exhibited significantly different expression profiles. In particular, genes involved in the tricarboxylic acid cycle, the glyoxylate shunt and amino acid biosynthesis (leucine, isoleucine, valine and proline) were up-regulated, whereas the fermentative gene was down-regulated. To confirm the indications obtained from the macroarray analysis the activity of 34 enzymes involved in central metabolism was measured; this showed an activation of the tricarboxylic acid cycle and the glyoxylate shunt. The malic enzyme, involved in the production of pyruvate, and pyruvate dehydrogenase, required for the channelling of pyruvate into acetyl-CoA, were also induced in IAA-treated cells. Moreover, it was shown that the enhanced production of acetyl-CoA and the decrease of NADH/NAD ratio are connected with the molecular process of the IAA response. The results demonstrate that IAA treatment is a stimulus capable of inducing changes in gene expression, enzyme activity and metabolite level involved in central metabolic pathways in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28765-0
2006-08-01
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/8/2421.html?itemId=/content/journal/micro/10.1099/mic.0.28765-0&mimeType=html&fmt=ahah

References

  1. Akashi H, Gojobori T. 2002; Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis . Proc Natl Acad Sci U S A 99:3695–3700 [CrossRef]
    [Google Scholar]
  2. Alleanza P, Lessie G. T. 1982; Pseudomonas cepacia mutants blocked in Entner-Doudoroff pathway. J Bacteriol 150:1340–1347
    [Google Scholar]
  3. Artigas F, Sunol C, Tusell J. M, Martinez E, Gelpi E. 1985; Comparative ontogenesis of brain tryptamine, serotonin, and tryptophan. J Neurochem 44:31–37 [CrossRef]
    [Google Scholar]
  4. Bridger W. A, Ramaley R. F, Boyer P. D. 1969; Succinyl coenzyme A synthase from Escherichia coli . Methods Enzymol 13:70–71
    [Google Scholar]
  5. Brown T. D, Jones-Mortimer M. C, Kornberg H. L. 1977; The enzymatic interconversion of acetate and acetyl-coenzyme A in Escherichia coli . J Gen Microbiol 102:327–336 [CrossRef]
    [Google Scholar]
  6. Chang D. E, Shin S, Rhee J. S, Pan J. G. 1999; Acetate metabolism in a pta mutant of Escherichia coli W3110: importance of maintaining acetyl coenzyme A flux for growth and survival. J Bacteriol 181:6656–6663
    [Google Scholar]
  7. Chohnan S, Izawa H, Nishihara H, Takamura Y. 1998; Changes in size of intracellular pools of coenzyme A and its thioesters in Escherichia coli K-12 cells to various carbon sources and stresses. Biosci Biotechnol Biochem 62:1122–1128 [CrossRef]
    [Google Scholar]
  8. Clark D, Cronan J. E. 1980; Escherichia coli mutants with altered control of alcohol dehydrogenase and nitrate reductase. J Bacteriol 141:177–183
    [Google Scholar]
  9. Cooper R. A, Kornberg H. L. 1966; Phosphoenolpyruvate synthase. Methods Enzymol 8:309–314
    [Google Scholar]
  10. Crasnier M. 1996; Cyclic AMP and catabolite repression. Res Microbiol 147:479–482 [CrossRef]
    [Google Scholar]
  11. Cunningham L, Guest J. R. 1998; Transcription and transcript processing in the sdhCDAB-sucABCD operon of Escherichia coli . Microbiology 144:2113–2123 [CrossRef]
    [Google Scholar]
  12. D'alessio G, Josse J. 1966; Phosphoglycerate kinase and phosphoglyceromutase from Escherichia coli . Methods Enzymol 42:139–144
    [Google Scholar]
  13. Davies P. J. 1995 Plant Hormones Dordrecht, The Netherlands: Kluwer;
    [Google Scholar]
  14. De Felice M, Griffo G, Lago T. C, Limanuro D, Ricca E. 1988; Detection of the acetolactate synthase isoenzyme I and III of Escherichia coli K-12. Methods Enzymol 166:241–244
    [Google Scholar]
  15. de Graef R. M, Alexeeva S, Snoep J. L, Teixeira de Mattos J. 1999; The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli . J Bacteriol 181:2351–2357
    [Google Scholar]
  16. De Melo M. P, Pithon-Curi T. C, Curi R. 2004; Indole-3-acetic acid increases glutamine utilization by high peroxidase activity-presenting leucocytes. Life Sci 75:1713–1725 [CrossRef]
    [Google Scholar]
  17. Dixon G. H, Kornberg H. L. 1969; Malate synthase from baker's yeast. Methods Enzymol 13:633–634
    [Google Scholar]
  18. Donahue J. L, Bownas J. L, Niehaus W. G, Larson T. J. 2000; Purification and characterization of glpX -encoded fructose 1,6-bisphosphatase, a new enzyme of the glycerol 3-phosphate regulon of Escherichia coli . J Bacteriol 182:5624–5627 [CrossRef]
    [Google Scholar]
  19. Ebright R. H, Beckwith J. 1985; The catabolite gene activator protein (CAP) is not required for indole-3-acetic acid to activate transcription of the araBAD operon of Escherichia coli K-12. Mol Gen Genet 201:51–55 [CrossRef]
    [Google Scholar]
  20. Ebright R. H, Wong J. R. 1981; Mechanism of transcriptional action of cyclic AMP in Escherichia coli : entry into DNA to disrupt DNA secondary structure. Proc Natl Acad Sci U S A 78:4011–4015 [CrossRef]
    [Google Scholar]
  21. Eikmanns B. J. 1992; Identification, sequence analysis and expression of Corynebacterium glutamicum gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and triosephosphate isomerase. J Bacteriol 174:6076–6086
    [Google Scholar]
  22. Fansler B, Lowenstein J. M. 1969; Aconitase from pig heart. Methods Enzymol 13:26–28
    [Google Scholar]
  23. Garcia-Horsman J. A, Barquera B, Rumbley J, Ma J, Gennis R. B. 1994; The superfamily of heme-copper respiratory oxidases. J Bacteriol 176:5587–5600
    [Google Scholar]
  24. Hill R. L, Bradshaw A. R. 1969; Fumarase. Methods Enzymol 13:91–93
    [Google Scholar]
  25. Holms H. 1996; Flux analysis and control of the central metabolic pathways in Escherichia coli . FEMS Microbiol Rev 19:85–116 [CrossRef]
    [Google Scholar]
  26. Hove-Jensen B, Maigaard M. 1993; Escherichia coli rpiA gene encoding ribose phosphate isomerase A. J Bacteriol 175:5628–5635
    [Google Scholar]
  27. Insland M. D, Wei B. Y, Kadner R. J. 1992; Structure and function of the uhp genes for the sugar phosphate transport system in Escherichia coli and Salmonella typhimurium . J Bacteriol 174:2754–2762
    [Google Scholar]
  28. Josephson L. B, Fraenkel D. G. 1969; Transketolase mutants of Escherichia coli . J Bacteriol 100:1289–1295
    [Google Scholar]
  29. King T. E. 1969; Preparation of succinate dehydrogenase and reconstitution of succinate oxidase. Methods Enzymol 10:322–331
    [Google Scholar]
  30. Kitto B. G. 1969; Intra- and extramitochondrial malate dehydrogenase from chicken and tuna heart. Methods Enzymol 13:106–107
    [Google Scholar]
  31. Kline L. E, Brown C. S, Bankaitis V, Montefiori D. C, Craig K. 1980; Metabolite gene regulation of the l-arabinose operon in Escherichia coli with indoleacetic acid and other indole derivatives. Proc Natl Acad Sci U S A 77:1768–1772 [CrossRef]
    [Google Scholar]
  32. Kochhar S, Chuard N, Hottinger H. 1992; Glutamate 264 modulates the pH dependence of the NAD[sup]+[/sup]-dependent d-lactate dehydrogenase. J Biol Chem 267:20298–20301
    [Google Scholar]
  33. Lemcke K, Prinsen E, Van Onckelen H, Schmülling T. 2000; The ORF8 gene product of Agrobacterium rhizogenes TL-DNA has tryptophan 2-monooxygenase activity. Mol Plant Microbe Interact 13:787–790 [CrossRef]
    [Google Scholar]
  34. Leonardo M. R, Dailly Y, Clark D. P. 1996; Role of NAD in regulating the adhE gene of Escherichia coli . J Bacteriol 178:6013–6018
    [Google Scholar]
  35. Ling K. H, Paetkau V, Marcus F, Lardy H. A. 1969; Phosphofructokinase. Methods Enzymol 9:425–429
    [Google Scholar]
  36. Livak K. J, Schmittgen T. D. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the 2[sup]ΔΔCT[/sup] method. Methods 25:402–408 [CrossRef]
    [Google Scholar]
  37. McFadden A. B. 1969; Isocitrate lyase. Methods Enzymol 13:163–165
    [Google Scholar]
  38. Muro-Pastor M. I, Florencio F. J. 1992; Purification and properties of NADP-isocitrate dehydrogenase from the unicellular cyanobacterium Synechocystis sp. PCC 6803. Eur J Biochem 203:99–105 [CrossRef]
    [Google Scholar]
  39. Pagnussat G. C, Lanteri M. L, Lamattina L. 2003; Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol 132:1241–1248 [CrossRef]
    [Google Scholar]
  40. Patnaik R, Roof W. D, Yong F. R, Liao J. C. 1992; Stimulation of glucose catabolism in Escherichia coli by potential futile cycle. J Bacteriol 174:7527–7532
    [Google Scholar]
  41. Pruss B. M, Wolfe A. J. 1994; Regulation of acetyl phosphate synthesis and degradation, and control of flagellar expression in Escherichia coli . Mol Microbiol 12:973–984 [CrossRef]
    [Google Scholar]
  42. Prusty R, Grisafi P, Fink G. R. 2004; The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae . Proc Natl Acad Sci U S A 101:4153–4157 [CrossRef]
    [Google Scholar]
  43. Reed L. J, Mukherjee B. B. 1969; α -Ketoglutarate dehydrogenase complex from Escherichia coli . Methods Enzymol 13:55–61
    [Google Scholar]
  44. Reithel F. J. 1966; Phosphoglucose isomerase. Methods Enzymol 9:565–569
    [Google Scholar]
  45. Rutter J. W, Hunsley J. R, Groves W. E, Calder J, Rajkumar T. V, Woodfin B. M. 1969; Fructose diphosphate aldolase. Methods Enzymol 9:479–498
    [Google Scholar]
  46. Schartz E. R, Old L. O, Reed L. J. 1968; Regulatory properties of pyruvate dehydrogenase from Escherichia coli . Biochem Biophys Res Commun 31:495–500 [CrossRef]
    [Google Scholar]
  47. Shin D, Lim S, Seok Y. J, Ryu S. 2001; Heat shock RNA polymerase (E σ [sup]32[/sup]) is involved in the transcription of mlc and crucial for induction of the Mlc regulon by glucose in Escherichia coli . J Biol Chem 276:25871–25875 [CrossRef]
    [Google Scholar]
  48. Skarstedt M. T, Silverstein E. 1976; Escherichia coli acetate kinase mechanism studied by net initial rate, equilibrium, and independent isotopic exchange kinetics. J Biol Chem 251:6775–6783
    [Google Scholar]
  49. Stols L, Donnelly M. I. 1997; Production of succinic acid through overexpression of NAD[sup]+[/sup]-dependent malic enzyme in an Escherichia coli mutant. Appl Environ Microbiol 63:2695–2701
    [Google Scholar]
  50. Takahashi K, Kasai K, Ochi K. 2004; Identification of the bacterial alarmone guanosine 5′-diphosphate 3′-diphosphate (ppGpp) in plants. Proc Natl Acad Sci U S A 101:4320–4324 [CrossRef]
    [Google Scholar]
  51. Tchola O, Horecker B. L. 1966; Transaldolase. Methods Enzymol 9:499–505
    [Google Scholar]
  52. Valentine W. N, Tanaka K. R. 1966; Pyruvate kinase: clinical aspects. Methods Enzymol 9:468–473
    [Google Scholar]
  53. Weissenborn D. L, Wittekindt N, Larson T. J. 1992; Structure and regulation of the glpFK operon encoding glycerol diffusion facilitator and glycerol kinase of Escherichia coli K-12. J Biol Chem 267:6122–6131
    [Google Scholar]
  54. Weitzman P. D. J. 1969; Citrate synthase from Escherichia coli . Methods Enzymol 13:22–26
    [Google Scholar]
  55. Westhead E. W. 1966; Enolase from yeast and rabbit muscle. Methods Enzymol 9:671–679
    [Google Scholar]
  56. Williams A. L. 1986; Regulation of acetohydroxy acid synthase activities in Escherichia coli K-12 by small metabolites. Biochim Biophys Acta 866:15–18 [CrossRef]
    [Google Scholar]
  57. Wohl R. C, Markus G. 1972; Phosphoenolpyruvate carboxylase of Escherichia coli . Purification and some properties. J Biol Chem 247:5785–5792
    [Google Scholar]
  58. Zhang Z, Yu J, Stanton R. C. 2000; A method for the determination of pyridine nucleotides using a single extract. Anal Biochem 285:163–167 [CrossRef]
    [Google Scholar]
  59. Zimmer W, Wesche M, Timmermans L. 1998; Identification and isolation of the indole-3-pyruvate decarboxylase gene from Azospirillum brasilense Sp7: sequencing and functional analysis of the gene locus. Curr Microbiol 36:327–331 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.28765-0
Loading
/content/journal/micro/10.1099/mic.0.28765-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error