The WSM419 gene is transcriptionally activated by FsrR and required to enhance survival in lethal acid conditions Free

Abstract

WR101 was identified as a mutant of WSM419 that contained a minitransposon-induced transcriptional fusion activated at least 20-fold at pH 5.7. The expression of this fusion in moderately acid conditions was dependent on the calcium concentration; increasing the calcium concentration to enhance cell growth and survival in acid conditions decreased the expression of the fusion. A gene region containing the fusion was sequenced, revealing five genes: , , , and . The reporter in WR101 was fused to , which encodes a putative transmembrane protein also found in other such as , and . As LpiA has partial sequence similarity to the lysyl-phosphatidylglycerol (LPG) synthetase FmtC/MprF from , membrane lipid compositions of strains were analysed. Cells cultured under neutral or acidic growth conditions did not induce any detectable LPG and therefore this lipid cannot be a major constituent of membranes. Expression studies in localized the acid-activated promoter within a 372 bp region upstream of the start codon. The acid-activated transcription of required the fused sensor–regulator product of the gene, because expression of was severely reduced in an mutant. strain 1021 does not contain and acid-activated expression of the fusion did not occur in this species. Although acid-activated transcription was not required for cell growth, its expression was crucial in enhancing the viability of cells subsequently exposed to lethal acid (pH 4.5) conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28764-0
2006-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/10/3049.html?itemId=/content/journal/micro/10.1099/mic.0.28764-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F, Madden T. L, Schaffer A. A, Zhang J, Zhang Z, Miller W, Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Bateman A, Birney E, Cerruti L. 7 other authors 2002; The Pfam Protein Families Database. Nucleic Acids Res 30:276–280 [CrossRef]
    [Google Scholar]
  3. Bligh E. G, Dyer J. W. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917 [CrossRef]
    [Google Scholar]
  4. de Rudder K. E. E, Thomas-Oates J. E, Geiger O. 1997; Rhizobium meliloti mutants deficient in phospholipid N -methyltransferase still contain phosphatidylcholine. J Bacteriol 179:6921–6928
    [Google Scholar]
  5. Dilworth M. J, Rynne F. G, Castelli J. M, Vivas-Marfisi A. I, Glenn A. R. 1999; Survival and exopolysaccharide production in Sinorhizobium meliloti WSM419 are affected by calcium and low pH. Microbiology 145:1585–1593 [CrossRef]
    [Google Scholar]
  6. Dilworth M. J, Howieson J. G, Reeve W. G, Tiwari R. P, Glenn A. R. 2001; Acid tolerance in legume root nodule bacteria and selecting for it. Aust J Exp Agric 41:435–446 [CrossRef]
    [Google Scholar]
  7. Galibert F, Finan T. M, Long S. R. 53 other authors 2001; The composite genome of the legume symbiont Sinorhizobium meliloti . Science 293:668–672 [CrossRef]
    [Google Scholar]
  8. Geiger O, Weissenmayer B, Finan T. M, Thomas-Oates J. E, Röhrs V. 1999; The regulator gene phoB mediates phosphate stress-controlled synthesis of the membrane lipid diacylglycerol-N,N,N -trimethylhomoserine in Rhizobium (Sinorhizobium) meliloti . Mol Microbiol 32:63–73 [CrossRef]
    [Google Scholar]
  9. Goss T. G, O'Hara G. W, Dilworth M. J, Glenn A. R. 1990; Cloning, characterization, and complementation of lesions causing acid sensitivity in Tn 5 -induced mutants of Rhizobium meliloti WSM419. J Bacteriol 172:5173–5179
    [Google Scholar]
  10. Graham P. H, Viteri S. E, Mackie F, Vargas A. A. T, Palacios A. 1982; Variation in acid soil tolerance among strains of Rhizobium phaseoli . Field Crop Res 5:121–128 [CrossRef]
    [Google Scholar]
  11. Howieson J. G, Ewing M. A. 1986; Acid tolerance in the Rhizobium meliloti–Medicago symbiosis. Aust J Agric Res 37:55–64 [CrossRef]
    [Google Scholar]
  12. Howieson J. G, Robson A. D, Abbott L. K. 1992; Calcium modifies pH effects on the growth of acid-tolerant and acid-sensitive Rhizobium meliloti . Aust J Agric Res 43:765–772 [CrossRef]
    [Google Scholar]
  13. Howieson J. G, Loi A, Carr S. J. 1995; Biserrula pelecinus L. – a legume pasture species with potential for acid, duplex soils which is nodulated by unique root-nodule bacteria. Aust J Agric Res 46:997–1009 [CrossRef]
    [Google Scholar]
  14. Kovach M. E, Elzer P. H, Hill S. E, Robertson G. T, Farris M. A, Peterson K. M, Roop R. M. II 1995; Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic resistance cassettes. Gene 166:175–176 [CrossRef]
    [Google Scholar]
  15. Marchler-Bauer A, Anderson J. B, DeWeese-Scott C. 24 other authors 2003; CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res 31:383–387 [CrossRef]
    [Google Scholar]
  16. Meade H. M, Long S. R, Ruvkun G. B, Brown S. E, Ausubel F. M. 1982; Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn 5 mutagenesis. J Bacteriol 149:114–122
    [Google Scholar]
  17. Metcalfe J. W, Jiang W, Daniels L. L, Kim S, Haldiman A, Wanner B. L. 1996; Conditionally replicative and conjugative plasmids carrying lacZα for cloning, mutagenesis and allele replacement in bacteria. Plasmid 35:1–13 [CrossRef]
    [Google Scholar]
  18. O'Hara G, Glenn A. R. 1994; The adaptive acid tolerance response in root nodule bacteria and Escherichia coli . Arch Microbiol 161:286–292 [CrossRef]
    [Google Scholar]
  19. O'Hara G. W, Goss T. J, Dilworth M. J, Glenn A. R. 1989; Maintenance of intracellular pH and acid-tolerance in Rhizobium meliloti . Appl Environ Microbiol 55:1870–1876
    [Google Scholar]
  20. Oku Y, Kurokawa K, Ichihasha N, Sekimizu K. 2004; Characterization of the Staphylococcus aureus mprF gene, involved in lysinylation of phosphatidylglycerol. Microbiology 150:45–51 [CrossRef]
    [Google Scholar]
  21. Peick B, Graumann P, Schmid R, Marahiel M, Werner D. 1999; Differential pH-induced proteins in Rhizobium tropici CIAT899 and Rhizobium etli CIAT611. Soil Biol Biochem 31:189–194 [CrossRef]
    [Google Scholar]
  22. Peschel A, Jack R. W, Otto M. 9 other authors 2001; Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med 193:1067–1076 [CrossRef]
    [Google Scholar]
  23. Priefer U. B, Aurag J, Boesten B. 9 other authors 2001; Characterisation of Phaseolus symbionts isolated from Mediterranean soils and analysis of genetic factors related to pH tolerance. J Biotechnol 91:223–236 [CrossRef]
    [Google Scholar]
  24. Reeve W. G, Tiwari R. P, Dilworth M. J, Glenn A. R. 1993; Calcium affects the growth and survival of Rhizobium meliloti . Soil Biol Biochem 25:581–586 [CrossRef]
    [Google Scholar]
  25. Reeve W. G, Tiwari R. P, Wong C. M, Dilworth M. J, Glenn A. R. 1998; The transcriptional regulator gene phrR in Sinorhizobium meliloti WSM419 is regulated by pH and other stresses. Microbiology 144:3335–3342 [CrossRef]
    [Google Scholar]
  26. Reeve W. G, Tiwari R. P, Worsley P. S, Dilworth M. J, Glenn A. R, Howieson J. G. 1999; Constructs for insertional mutagenesis, transcriptional signal localization and gene regulation studies in root nodule and other bacteria. Microbiology 145:1307–1316 [CrossRef]
    [Google Scholar]
  27. Reeve W. G, Tiwari R. P, Kale N. B, Dilworth M. J, Glenn A. R. 2002; ActP controls copper homeostasis in Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti preventing low pH-induced copper toxicity. Mol Microbiol 43:981–991 [CrossRef]
    [Google Scholar]
  28. Riccillo P, Muglia C, Roe A, Booth I. R, Aguilar M, de Bruijn F. J. 2000; Glutathione is involved in environmental stress response in Rhizobium tropici , including acid tolerance. J Bacteriol 182:1748–1753 [CrossRef]
    [Google Scholar]
  29. Robson A. D, Loneragan J. F. 1970; Nodulation and growth of Medicago truncatula on acid soils. I. Effect of calcium carbonate and inoculation level on the nodulation of Medicago truncatula on a moderately acid soil. Aust J Agric Res 21:427–434 [CrossRef]
    [Google Scholar]
  30. Staubitz P, Peschel A. 2002; MprF-mediated lysinylation of phospholipids in Bacillus subtilis – protection against bacteriocins in terrestrial habitats?. Microbiology 148:3331–3332
    [Google Scholar]
  31. Staubitz P, Neumann H, Schneider T, Weidemann I, Peschel A. 2004; MprF-mediated biosynthesis of lysylphosphatidylglycerol, an important determinant in staphylococcal defensin resistance. FEMS Microbiol Lett 231:67–71 [CrossRef]
    [Google Scholar]
  32. Studier F. W, Rosenberg A. H, Dunn J. J, Dubendorff J. W. 1990; Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89
    [Google Scholar]
  33. Tatusov R. L, Natale D. A, Garkavtsev I. V. 7 other authors 2001; The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29:22–28 [CrossRef]
    [Google Scholar]
  34. Tiwari R. P, Reeve W. G, Glenn A. R. 1992; Mutations conferring acid-sensitivity in the acid-tolerant strains of Rhizobium meliloti WSM419 and Rhizobium leguminosarum biovar viciae WSM710. FEMS Microbiol Lett 100:107–112 [CrossRef]
    [Google Scholar]
  35. Tiwari R. P, Reeve W. G, Dilworth M. J, Glenn A. R. 1996a; An essential role for actA in acid-tolerance of Rhizobium meliloti . Microbiology 142:601–610 [CrossRef]
    [Google Scholar]
  36. Tiwari R. P, Reeve W. G, Dilworth M. J, Glenn A. R. 1996b; Acid-tolerance in Rhizobium meliloti strain WSM419 involves a two-component sensor–regulator system. Microbiology 142:1693–1704 [CrossRef]
    [Google Scholar]
  37. Unkovich M, Pate J. S, Sanford P. 1993; Preparation of plant samples for high precision nitrogen isotope ratio analysis. Commun Soil Sci Plant Anal 24:2093–2106 [CrossRef]
    [Google Scholar]
  38. Vinuesa P, Neumann-Silkow F, Pacios-Bras C, Spaink H. P, Martinez-Romero E, Werner D. 2003; Genetic analysis of a pH-regulated operon from Rhizobium tropici CIAT899 involved in acid tolerance and nodulation competitiveness. Mol Plant Microbe Interact 16:159–168 [CrossRef]
    [Google Scholar]
  39. Wilson K. J, Sessitsch A, Corbo J. C, Giller K. E, Akkermans A. D. L, Jefferson R. A. 1995; β -Glucuronidase (GUS) transposons for ecological and genetic studies of rhizobia and other Gram-negative bacteria. Microbiology 141:1691–1705 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28764-0
Loading
/content/journal/micro/10.1099/mic.0.28764-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed