1887

Abstract

WR101 was identified as a mutant of WSM419 that contained a minitransposon-induced transcriptional fusion activated at least 20-fold at pH 5.7. The expression of this fusion in moderately acid conditions was dependent on the calcium concentration; increasing the calcium concentration to enhance cell growth and survival in acid conditions decreased the expression of the fusion. A gene region containing the fusion was sequenced, revealing five genes: , , , and . The reporter in WR101 was fused to , which encodes a putative transmembrane protein also found in other such as , and . As LpiA has partial sequence similarity to the lysyl-phosphatidylglycerol (LPG) synthetase FmtC/MprF from , membrane lipid compositions of strains were analysed. Cells cultured under neutral or acidic growth conditions did not induce any detectable LPG and therefore this lipid cannot be a major constituent of membranes. Expression studies in localized the acid-activated promoter within a 372 bp region upstream of the start codon. The acid-activated transcription of required the fused sensor–regulator product of the gene, because expression of was severely reduced in an mutant. strain 1021 does not contain and acid-activated expression of the fusion did not occur in this species. Although acid-activated transcription was not required for cell growth, its expression was crucial in enhancing the viability of cells subsequently exposed to lethal acid (pH 4.5) conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28764-0
2006-10-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/10/3049.html?itemId=/content/journal/micro/10.1099/mic.0.28764-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Bateman, A., Birney, E., Cerruti, L. & 7 other authors ( 2002; ). The Pfam Protein Families Database. Nucleic Acids Res 30, 276–280.[CrossRef]
    [Google Scholar]
  3. Bligh, E. G. & Dyer, J. W. ( 1959; ). A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37, 911–917.[CrossRef]
    [Google Scholar]
  4. de Rudder, K. E. E., Thomas-Oates, J. E. & Geiger, O. ( 1997; ). Rhizobium meliloti mutants deficient in phospholipid N-methyltransferase still contain phosphatidylcholine. J Bacteriol 179, 6921–6928.
    [Google Scholar]
  5. Dilworth, M. J., Rynne, F. G., Castelli, J. M., Vivas-Marfisi, A. I. & Glenn, A. R. ( 1999; ). Survival and exopolysaccharide production in Sinorhizobium meliloti WSM419 are affected by calcium and low pH. Microbiology 145, 1585–1593.[CrossRef]
    [Google Scholar]
  6. Dilworth, M. J., Howieson, J. G., Reeve, W. G., Tiwari, R. P. & Glenn, A. R. ( 2001; ). Acid tolerance in legume root nodule bacteria and selecting for it. Aust J Exp Agric 41, 435–446.[CrossRef]
    [Google Scholar]
  7. Galibert, F., Finan, T. M., Long, S. R. & 53 other authors ( 2001; ). The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293, 668–672.[CrossRef]
    [Google Scholar]
  8. Geiger, O., Röhrs, V., Weissenmayer, B., Finan, T. M. & Thomas-Oates, J. E. ( 1999; ). The regulator gene phoB mediates phosphate stress-controlled synthesis of the membrane lipid diacylglycerol-N,N,N-trimethylhomoserine in Rhizobium (Sinorhizobium) meliloti. Mol Microbiol 32, 63–73.[CrossRef]
    [Google Scholar]
  9. Goss, T. G., O'Hara, G. W., Dilworth, M. J. & Glenn, A. R. ( 1990; ). Cloning, characterization, and complementation of lesions causing acid sensitivity in Tn5-induced mutants of Rhizobium meliloti WSM419. J Bacteriol 172, 5173–5179.
    [Google Scholar]
  10. Graham, P. H., Viteri, S. E., Mackie, F., Vargas, A. A. T. & Palacios, A. ( 1982; ). Variation in acid soil tolerance among strains of Rhizobium phaseoli. Field Crop Res 5, 121–128.[CrossRef]
    [Google Scholar]
  11. Howieson, J. G. & Ewing, M. A. ( 1986; ). Acid tolerance in the Rhizobium meliloti–Medicago symbiosis. Aust J Agric Res 37, 55–64.[CrossRef]
    [Google Scholar]
  12. Howieson, J. G., Robson, A. D. & Abbott, L. K. ( 1992; ). Calcium modifies pH effects on the growth of acid-tolerant and acid-sensitive Rhizobium meliloti. Aust J Agric Res 43, 765–772.[CrossRef]
    [Google Scholar]
  13. Howieson, J. G., Loi, A. & Carr, S. J. ( 1995; ). Biserrula pelecinus L. – a legume pasture species with potential for acid, duplex soils which is nodulated by unique root-nodule bacteria. Aust J Agric Res 46, 997–1009.[CrossRef]
    [Google Scholar]
  14. Kovach, M. E., Elzer, P. H., Hill, S. E., Robertson, G. T., Farris, M. A., Roop, R. M., II & Peterson, K. M. ( 1995; ). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic resistance cassettes. Gene 166, 175–176.[CrossRef]
    [Google Scholar]
  15. Marchler-Bauer, A., Anderson, J. B., DeWeese-Scott, C. & 24 other authors ( 2003; ). CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res 31, 383–387.[CrossRef]
    [Google Scholar]
  16. Meade, H. M., Long, S. R., Ruvkun, G. B., Brown, S. E. & Ausubel, F. M. ( 1982; ). Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 149, 114–122.
    [Google Scholar]
  17. Metcalfe, J. W., Jiang, W., Daniels, L. L., Kim, S., Haldiman, A. & Wanner, B. L. ( 1996; ). Conditionally replicative and conjugative plasmids carrying lacZα for cloning, mutagenesis and allele replacement in bacteria. Plasmid 35, 1–13.[CrossRef]
    [Google Scholar]
  18. O'Hara, G. & Glenn, A. R. ( 1994; ). The adaptive acid tolerance response in root nodule bacteria and Escherichia coli. Arch Microbiol 161, 286–292.[CrossRef]
    [Google Scholar]
  19. O'Hara, G. W., Goss, T. J., Dilworth, M. J. & Glenn, A. R. ( 1989; ). Maintenance of intracellular pH and acid-tolerance in Rhizobium meliloti. Appl Environ Microbiol 55, 1870–1876.
    [Google Scholar]
  20. Oku, Y., Kurokawa, K., Ichihasha, N. & Sekimizu, K. ( 2004; ). Characterization of the Staphylococcus aureus mprF gene, involved in lysinylation of phosphatidylglycerol. Microbiology 150, 45–51.[CrossRef]
    [Google Scholar]
  21. Peick, B., Graumann, P., Schmid, R., Marahiel, M. & Werner, D. ( 1999; ). Differential pH-induced proteins in Rhizobium tropici CIAT899 and Rhizobium etli CIAT611. Soil Biol Biochem 31, 189–194.[CrossRef]
    [Google Scholar]
  22. Peschel, A., Jack, R. W., Otto, M. & 9 other authors ( 2001; ). Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med 193, 1067–1076.[CrossRef]
    [Google Scholar]
  23. Priefer, U. B., Aurag, J. & Boesten, B. & 9 other authors ( 2001; ). Characterisation of Phaseolus symbionts isolated from Mediterranean soils and analysis of genetic factors related to pH tolerance. J Biotechnol 91, 223–236.[CrossRef]
    [Google Scholar]
  24. Reeve, W. G., Tiwari, R. P., Dilworth, M. J. & Glenn, A. R. ( 1993; ). Calcium affects the growth and survival of Rhizobium meliloti. Soil Biol Biochem 25, 581–586.[CrossRef]
    [Google Scholar]
  25. Reeve, W. G., Tiwari, R. P., Wong, C. M., Dilworth, M. J. & Glenn, A. R. ( 1998; ). The transcriptional regulator gene phrR in Sinorhizobium meliloti WSM419 is regulated by pH and other stresses. Microbiology 144, 3335–3342.[CrossRef]
    [Google Scholar]
  26. Reeve, W. G., Tiwari, R. P., Worsley, P. S., Dilworth, M. J., Glenn, A. R. & Howieson, J. G. ( 1999; ). Constructs for insertional mutagenesis, transcriptional signal localization and gene regulation studies in root nodule and other bacteria. Microbiology 145, 1307–1316.[CrossRef]
    [Google Scholar]
  27. Reeve, W. G., Tiwari, R. P., Kale, N. B., Dilworth, M. J. & Glenn, A. R. ( 2002; ). ActP controls copper homeostasis in Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti preventing low pH-induced copper toxicity. Mol Microbiol 43, 981–991.[CrossRef]
    [Google Scholar]
  28. Riccillo, P., Muglia, C., de Bruijn, F. J., Roe, A., Booth, I. R. & Aguilar, M. ( 2000; ). Glutathione is involved in environmental stress response in Rhizobium tropici, including acid tolerance. J Bacteriol 182, 1748–1753.[CrossRef]
    [Google Scholar]
  29. Robson, A. D. & Loneragan, J. F. ( 1970; ). Nodulation and growth of Medicago truncatula on acid soils. I. Effect of calcium carbonate and inoculation level on the nodulation of Medicago truncatula on a moderately acid soil. Aust J Agric Res 21, 427–434.[CrossRef]
    [Google Scholar]
  30. Staubitz, P. & Peschel, A. ( 2002; ). MprF-mediated lysinylation of phospholipids in Bacillus subtilis – protection against bacteriocins in terrestrial habitats? Microbiology 148, 3331–3332.
    [Google Scholar]
  31. Staubitz, P., Neumann, H., Schneider, T., Weidemann, I. & Peschel, A. ( 2004; ). MprF-mediated biosynthesis of lysylphosphatidylglycerol, an important determinant in staphylococcal defensin resistance. FEMS Microbiol Lett 231, 67–71.[CrossRef]
    [Google Scholar]
  32. Studier, F. W., Rosenberg, A. H., Dunn, J. J. & Dubendorff, J. W. ( 1990; ). Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185, 60–89.
    [Google Scholar]
  33. Tatusov, R. L., Natale, D. A., Garkavtsev, I. V. & 7 other authors ( 2001; ). The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29, 22–28.[CrossRef]
    [Google Scholar]
  34. Tiwari, R. P., Reeve, W. G. & Glenn, A. R. ( 1992; ). Mutations conferring acid-sensitivity in the acid-tolerant strains of Rhizobium meliloti WSM419 and Rhizobium leguminosarum biovar viciae WSM710. FEMS Microbiol Lett 100, 107–112.[CrossRef]
    [Google Scholar]
  35. Tiwari, R. P., Reeve, W. G., Dilworth, M. J. & Glenn, A. R. ( 1996a; ). An essential role for actA in acid-tolerance of Rhizobium meliloti. Microbiology 142, 601–610.[CrossRef]
    [Google Scholar]
  36. Tiwari, R. P., Reeve, W. G., Dilworth, M. J. & Glenn, A. R. ( 1996b; ). Acid-tolerance in Rhizobium meliloti strain WSM419 involves a two-component sensor–regulator system. Microbiology 142, 1693–1704.[CrossRef]
    [Google Scholar]
  37. Unkovich, M., Pate, J. S. & Sanford, P. ( 1993; ). Preparation of plant samples for high precision nitrogen isotope ratio analysis. Commun Soil Sci Plant Anal 24, 2093–2106.[CrossRef]
    [Google Scholar]
  38. Vinuesa, P., Neumann-Silkow, F., Pacios-Bras, C., Spaink, H. P., Martinez-Romero, E. & Werner, D. ( 2003; ). Genetic analysis of a pH-regulated operon from Rhizobium tropici CIAT899 involved in acid tolerance and nodulation competitiveness. Mol Plant Microbe Interact 16, 159–168.[CrossRef]
    [Google Scholar]
  39. Wilson, K. J., Sessitsch, A., Corbo, J. C., Giller, K. E., Akkermans, A. D. L. & Jefferson, R. A. ( 1995; ). β-Glucuronidase (GUS) transposons for ecological and genetic studies of rhizobia and other Gram-negative bacteria. Microbiology 141, 1691–1705.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28764-0
Loading
/content/journal/micro/10.1099/mic.0.28764-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error