1887

Abstract

Polyunsaturated fatty acids (PUFAs), including linoleic acid (C18 : 2) and -linolenic acid (C18 : 3), are major components of membranes. PUFAs are produced from monounsaturated fatty acids by several fatty acid desaturases (FADs) in many fungi, but , and humans do not have these enzymes. Although the fungal pathogen produces C18 : 2 and C18 : 3, the enzymes that synthesize them have not yet been investigated. In this report, two ORFs, and , were identified based on their homology to other yeast FADs, and and gene disruptants were constructed. Δ and Δ lost their ability to produce C18 : 2 and C18 : 3, respectively. Furthermore, cells expressing Fad2p converted palmitoleic acid (C16 : 1) and C18 : 1 to hexadecadienoic acid (C16 : 2) and C18 : 2, respectively, and Fad3p-expressing cells converted C18 : 2 to C18 : 3. These results strongly supported that encodes the Δ12 FAD and that encodes the 3 FAD. However, phenotypic analysis demonstrated that the presence of these PUFAs did not affect the virulence to mice, or morphogenesis in the culture media used to induce morphological change of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28751-0
2006-05-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/5/1551.html?itemId=/content/journal/micro/10.1099/mic.0.28751-0&mimeType=html&fmt=ahah

References

  1. Brondz, I. & Olsen, I. ( 1990; ). Fatty acid contents of the yeast and mycelial phase of Candida albicans. J Chromatogr 533, 152–158.[CrossRef]
    [Google Scholar]
  2. Buckley, H. R., Price, M. R. & Daneo-Moore, L. ( 1982; ). Isolation of a variant of Candida albicans. Infect Immun 37, 1209–1217.
    [Google Scholar]
  3. Burke, D., Dawson, D. & Stearns, T. ( 2000; ). Methods in Yeast Genetics: a Cold Spring Harbor Laboratory Course Manual, 2000 edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  4. Calvo, A. M., Hinze, L. L., Gardner, H. W. & Keller, N. P. ( 1999; ). Sporogenic effect of polyunsaturated fatty acids on development of Aspergillus spp. Appl Environ Microbiol 65, 3668–3673.
    [Google Scholar]
  5. Calvo, A. M., Gardner, H. W. & Keller, N. P. ( 2001; ). Genetic connection between fatty acid metabolism and sporulation in Aspergillus nidulans. J Biol Chem 276, 25766–25774.[CrossRef]
    [Google Scholar]
  6. Feller, G. & Gerday, C. ( 2003; ). Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1, 200–208.[CrossRef]
    [Google Scholar]
  7. Ghannoum, M. A., Khamis, J. L. & Radwan, S. S. ( 1986; ). Dimorphism-associated variations in the lipid composition of Candida albicans. J Gen Microbiol 132, 2367–2375.
    [Google Scholar]
  8. Hanaoka, N., Umeyama, T., Ueno, K., Ueda, K., Beppu, T., Fugo, H., Uehara, Y. & Niimi, M. ( 2005; ). A putative dual-specific protein phosphatase encoded by YVH1 controls growth, filamentation and virulence in Candida albicans. Microbiology 151, 2223–2232.[CrossRef]
    [Google Scholar]
  9. Kaneko, A., Umeyama, T., Hanaoka, N., Monk, B. C., Uehara, Y. & Niimi, M. ( 2004; ). Tandem affinity purification of the Candida albicans septin protein complex. Yeast 21, 1025–1033.[CrossRef]
    [Google Scholar]
  10. Kitajima, Y. & Nozawa, Y. ( 1996; ). Lipids and dimorphism of Candida albicans and Sporothrix schenckii. In Lipids of Pathogenic Fungi, pp. 219–234. Edited by R. Prasad & M. A. Ghannoum. Boca Raton, FL: CRC Press.
  11. Krishnamurthy, S., Plaine, A., Albert, J., Prasad, T., Prasad, R. & Ernst, J. F. ( 2004; ). Dosage-dependent functions of fatty acid desaturase Ole1p in growth and morphogenesis of Candida albicans. Microbiology 150, 1991–2003.[CrossRef]
    [Google Scholar]
  12. Lee, K. L., Buckley, H. R. & Campbell, C. C. ( 1975; ). An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia 13, 148–153.[CrossRef]
    [Google Scholar]
  13. Liu, H., Kohler, J. & Fink, G. R. ( 1994; ). Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266, 1723–1726.[CrossRef]
    [Google Scholar]
  14. Los, D. A. & Murata, N. ( 1998; ). Structure and expression of fatty acid desaturase. Biochim Biophys Acta 1394, 3–15.[CrossRef]
    [Google Scholar]
  15. Mishra, P., Bolard, J. & Prasad, R. ( 1992; ). Emerging role of lipids of Candida albicans, a pathogenic dimorphic yeast. Biochim Biophys Acta 1127, 1–14.[CrossRef]
    [Google Scholar]
  16. Nakamura, M. T. & Nara, T. Y. ( 2004; ). Structure, function, and dietary regulation of Δ6, Δ5, and Δ9 desaturases. Annu Rev Nutrition 24, 345–376.[CrossRef]
    [Google Scholar]
  17. Nobile, C. J., Bruno, V. M., Richard, M. L., Davis, D. A. & Mitchell, A. P. ( 2003; ). Genetic control of chlamydospore formation in Candida albicans. Microbiology 149, 3629–3637.[CrossRef]
    [Google Scholar]
  18. Odds, F. C. ( 1987; ). Candida infections: an overview. Crit Rev Microbiol 15, 1–5.[CrossRef]
    [Google Scholar]
  19. Odds, F. C. ( 1988; ). Factors that predispose the host to candidosis. In Candida and Candidosis, pp. 93–114. London: Baillière Tindall.
  20. Oura, T. & Kajiwara, S. ( 2004; ). Saccharomyces kluyveri FAD3 encodes an ω3 fatty acid desaturase. Microbiology 150, 1983–1990.[CrossRef]
    [Google Scholar]
  21. Prasad, R., Koul, A., Mukherjee, P. K. & Ghannoum, M. A. ( 1996; ). Lipids of Candida albicans. In Lipids of Pathogenic Fungi, pp.105–138. Edited by R. Prasad & A. M. Ghannoum. Boca Raton, FL: CRC Press.
  22. Ratledge, C. & Evans, C. T. ( 1991; ). Lipids and their metabolism. In The Yeast, 2nd edn, pp. 367–455. Edited by A. H. Rose & J. S. Harrison. London: Academic Press.
  23. Sadamori, S. ( 1987; ). Comparative study of lipid composition of Candida albicans in the yeast and mycelial forms. Hiroshima J Med Sci 36, 53–59.
    [Google Scholar]
  24. Sobel, J. D., Muller, G. & Buckley, H. R. ( 1984; ). Critical role of germ tube formation in the pathogenesis of candidal vaginitis. Infect Immun 44, 576–580.
    [Google Scholar]
  25. Spitzer, V. ( 1997; ). Structure analysis of fatty acids by gas chromatography – low resolution electron impact mass spectrometry of their 4,4-dimethyloxazoline derivatives – a review. Prog Lipid Res 35, 387–408.
    [Google Scholar]
  26. Umeyama, T., Nagai, Y., Niimi, M. & Uehara, Y. ( 2002; ). Construction of FLAG tagging vectors for Candida albicans. Yeast 19, 611–618.[CrossRef]
    [Google Scholar]
  27. Watanabe, K., Oura, T., Sakai, H. & Kajiwara, S. ( 2004; ). Yeast Δ12 fatty acid desaturase: gene cloning, expression and function. Biosci Biotechnol Biochem 68, 721–727.[CrossRef]
    [Google Scholar]
  28. Wilson, R. A., Calvo, A. M., Chang, P.-K. & Keller, N. P. ( 2004; ). Characterization of the Aspergillus parasiticus Δ12-desaturase gene: a role for lipid metabolism in the Aspergillus–seed interaction. Microbiology 150, 2881–2888.[CrossRef]
    [Google Scholar]
  29. Yano, K., Yamada, T., Banno, Y., Sekiya, T. & Nozawa, Y. ( 1982; ). Modification of lipid composition in a dimorphic fungus, Candida albicans, during the yeast cell to hypha transformation. Jpn J Med Mycol 23, 159–165.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28751-0
Loading
/content/journal/micro/10.1099/mic.0.28751-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error