1887

Abstract

The dark-green-pigmented marine bacterium produces several target-specific compounds that act against a range of common fouling organisms, including bacteria, fungi, protozoa, invertebrate larvae and algal spores. The ToxR-like regulator WmpR has previously been shown to regulate expression of bioactive compounds, type IV pili and biofilm formation phenotypes which all appear at the onset of stationary phase. In this study a comparison of survival under starvation or stress between the wild-type strain and a mutant (D2W2) does not suggest a role for WmpR in regulating starvation- and stress-resistant phenotypes such as those that may be required in stationary phase. Both proteomic [2-dimensional PAGE (2D-PAGE)] and transcriptomic (RNA arbitrarily primed PCR) studies were used to discover members of the WmpR regulon. 2D-PAGE identified 11 proteins that were differentially expressed by WmpR. Peptide sequence data were obtained for six of these proteins and identified using the draft genome as being involved in protein synthesis, amino acid transamination and ubiquinone biosynthesis, as well as hypothetical proteins. The transcriptomic analysis identified three genes significantly up-regulated by WmpR, including a TonB-dependent outer-membrane protein, a non-ribosomal peptide synthetase and a hypothetical protein. Under iron-limitation the wild-type showed greater survival than D2W2, indicating the importance of WmpR under these conditions. Results from these studies show that WmpR controls the expression of genes encoding proteins involved in iron acquisition and uptake, amino acid metabolism and ubiquinone biosynthesis in addition to a number of proteins with as yet unknown functions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28740-0
2006-05-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/5/1385.html?itemId=/content/journal/micro/10.1099/mic.0.28740-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Andrews, S. C., Robinson, A. K. & Rodriguez-Quinones, F. ( 2003; ). Bacterial iron homeostasis. FEMS Microbiol Rev 27, 215–237.[CrossRef]
    [Google Scholar]
  3. Belogrudov, G. I., Lee, P. T., Jonassen, T., Hsu, A. Y., Gin, P. & Clarke, C. F. ( 2001; ). Yeast COQ4 encodes a mitochondrial protein required for coenzyme Q synthesis. Arch Biochem Biophys 392, 48–58.[CrossRef]
    [Google Scholar]
  4. Bidle, K. A. ( 2003; ). Differential expression of genes influenced by changing salinity using RNA arbitrarily primed PCR in the archaeal halophile Haloferax volcanii. Extremophiles 7, 1–7.
    [Google Scholar]
  5. Bidle, K. A. & Bartlett, D. H. ( 2001; ). RNA arbitrarily primed PCR survey of genes regulated by ToxR in the deep-sea bacterium Photobacterium profundum strain SS9. J Bacteriol 183, 1688–1693.[CrossRef]
    [Google Scholar]
  6. Bina, J., Zhu, J., Dziejman, M., Faruque, S., Calderwood, S. & Mekalanos, J. ( 2003; ). ToxR regulon of Vibrio cholerae and its expression in vibrios shed by cholera patients. Proc Natl Acad Sci U S A 100, 2801–2806.[CrossRef]
    [Google Scholar]
  7. Brown, M. V. & Bowman, J. P. ( 2001; ). A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol Ecol 35, 267–275.[CrossRef]
    [Google Scholar]
  8. Challis, G. L. & Naismith, J. H. ( 2004; ). Structural aspects of non-ribosomal peptide biosynthesis. Curr Opin Struct Biol 14, 748–756.[CrossRef]
    [Google Scholar]
  9. Egan, S., Thomas, T., Holmström, C. & Kjelleberg, S. ( 2000; ). Phylogenetic relationship and antifouling activity of bacterial epiphytes from the marine alga Ulva lactuca. Environ Microbiol 2, 343–347.[CrossRef]
    [Google Scholar]
  10. Egan, S., James, S., Holmström, C. & Kjelleberg, S. ( 2001; ). Inhibition of algal spore germination by the marine bacterium Pseudoalteromonas tunicata. FEMS Microbiol Ecol 35, 67–73.[CrossRef]
    [Google Scholar]
  11. Egan, S., James, S., Holmström, C. & Kjelleberg, S. ( 2002a; ). Correlation between pigmentation and antifouling compounds produced by Pseudoalteromonas tunicata. Environ Microbiol 4, 433–442.[CrossRef]
    [Google Scholar]
  12. Egan, S., James, S. & Kjelleberg, S. ( 2002b; ). Identification and characterization of a putative transcriptional regulator controlling the expression of fouling inhibitors in Pseudoalteromonas tunicata. Appl Environ Microbiol 68, 372–378.[CrossRef]
    [Google Scholar]
  13. Faraldo-Gomez, J. D. & Sansom, M. S. ( 2003; ). Acquisition of siderophores in Gram-negative bacteria. Nat Rev Mol Cell Biol 4, 105–116.[CrossRef]
    [Google Scholar]
  14. Fegatella, F., Ostrowski, M. & Cavicchioli, R. ( 1999; ). An assessment of protein profiles from the marine oligotrophic ultramicrobacterium, Sphingomonas sp. strain RB2256. Electrophoresis 20, 2094–2098.[CrossRef]
    [Google Scholar]
  15. Franks, A., Haywood, P., Holmström, C., Egan, S., Kjelleberg, S. & Kumar, N. ( 2005; ). Isolation and structure elucidation of a novel yellow pigment from the marine bacterium Pseudoalteromonas tunicata. Molecules 10, 1286–1291.[CrossRef]
    [Google Scholar]
  16. Gledhill, M. & Van den Berg, C. M. G. ( 1994; ). Determination of complexation of iron (III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry. Mar Chem 47, 41–54.[CrossRef]
    [Google Scholar]
  17. Goodchild, A., Saunders, N. F., Ertan, H., Raftery, M., Guilhaus, M., Curmi, P. M. & Cavicchioli, R. ( 2004; ). A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii. Mol Microbiol 53, 309–321.[CrossRef]
    [Google Scholar]
  18. Gorg, A., Weiss, W. & Dunn, M. J. ( 2004; ). Current two-dimensional electrophoresis technology for proteomics. Proteomics 4, 3665–3685.[CrossRef]
    [Google Scholar]
  19. Holmes, A. J., Tujula, N. A., Holley, M., Contos, A., James, J. M., Rogers, P. & Gillings, M. R. ( 2001; ). Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia. Environ Microbiol 3, 256–264.[CrossRef]
    [Google Scholar]
  20. Holmström, C., Rittschof, D. & Kjelleberg, S. ( 1992; ). Inhibition of settlement by larvae of Balanus amphitrite and Ciona intestinalis by a surface-colonizing marine bacterium. Appl Environ Microbiol 58, 2111–2115.
    [Google Scholar]
  21. Holmström, C., James, S., Neilan, B. A., White, D. C. & Kjelleberg, S. ( 1998; ). Pseudoalteromonas tunicata sp. nov., a bacterium that produces antifouling agents. Int J Syst Bacteriol 48, 1205–1212.[CrossRef]
    [Google Scholar]
  22. Hung, D. T. & Mekalanos, J. J. ( 2005; ). Bile acids induce cholera toxin expression in Vibrio cholerae in a ToxT-independent manner. Proc Natl Acad Sci U S A 102, 3028–3033.[CrossRef]
    [Google Scholar]
  23. James, S. G., Holmström, C. & Kjelleberg, S. ( 1996; ). Purification and characterization of a novel antibacterial protein from the marine bacterium D2. Appl Environ Microbiol 62, 2783–2788.
    [Google Scholar]
  24. Kanoh, K., Kamino, K., Leleo, G., Adachi, K. & Shizuri, Y. ( 2003; ). Pseudoalterobactin A and B, new siderophores excreted by marine bacterium Pseudoalteromonas sp. KP20-4. J Antibiot 56, 871–875.[CrossRef]
    [Google Scholar]
  25. Krukonis, E. S. & DiRita, V. J. ( 2003; ). From motility to virulence: sensing and responding to environmental signals in Vibrio cholerae. Curr Opin Microbiol 6, 186–190.[CrossRef]
    [Google Scholar]
  26. Lamont, I. L., Beare, P. A., Ochsner, U., Vasil, A. I. & Vasil, M. L. ( 2002; ). Siderophore-mediated signalling regulates virulence factor production in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 99, 7072–7077.[CrossRef]
    [Google Scholar]
  27. Lopez-Hellin, J., Gonzalo, R., Tejeda, M., Carrascal, M., Vila, M. R., Abian, J. & Garcia-Arumi, E. ( 2005; ). Transcriptomic and proteomic analysis of liver and muscle alterations caused by surgical stress in rats. Clin Sci 108, 167–178.[CrossRef]
    [Google Scholar]
  28. Mai-Prochnow, A., Evans, F., Dalisay-Saludes, D., Stelzer, S., Egan, S., James, S., Webb, J. S. & Kjelleberg, S. ( 2004; ). Biofilm development and cell death in the marine bacterium Pseudoalteromonas tunicata. Appl Environ Microbiol 70, 3232–3238.[CrossRef]
    [Google Scholar]
  29. Marchesi, J. R., Sato, T., Weightman, A. J., Martin, T. A., Fry, J. C., Hiom, S. J. & Wade, W. G. ( 1998; ). Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64, 795–799.
    [Google Scholar]
  30. Marden, P., Tunlid, A., Malmcrona-Friberg, K., Odham, G. & Kjelleberg, S. ( 1985; ). Physiological and morphological changes during short-term starvation of marine bacterial isolates. Arch Microbiol 142, 326–332.[CrossRef]
    [Google Scholar]
  31. Moffitt, M. C. & Neilan, B. A. ( 2000; ). The expansion of mechanistic and organismic diversity associated with non-ribosomal peptides. FEMS Microbiol Lett 191, 159–167.[CrossRef]
    [Google Scholar]
  32. Nagel, A. C., Fleming, J. T., Sayler, G. S. & Beattie, K. L. ( 2001; ). Screening for ribosomal-based false positives following prokaryotic mRNA differential display. Biotechniques 30, 988–990, 992, 994–996.
    [Google Scholar]
  33. Nelson, D. R., Sadlowski, Y., Eguchi, M. & Kjelleberg, S. ( 1997; ). The starvation-stress response of Vibrio (Listonella) anguillarum. Microbiology 143, 2305–2312.[CrossRef]
    [Google Scholar]
  34. Nyström, T. ( 1998; ). To be or not to be: the ultimate decision of the growth-arrested bacterial cell. FEMS Microbiol Rev 21, 283–290.[CrossRef]
    [Google Scholar]
  35. Nyström, T., Olsson, R. M. & Kjelleberg, S. ( 1992; ). Survival, stress resistance, and alterations in protein expression in the marine Vibrio sp. strain S14 during starvation for different individual nutrients. Appl Environ Microbiol 58, 55–65.
    [Google Scholar]
  36. Osorio, C. R. & Klose, K. E. ( 2000; ). A region of the transmembrane regulatory protein ToxR that tethers the transcriptional activation domain to the cytoplasmic membrane displays wide divergence among Vibrio species. J Bacteriol 182, 526–528.[CrossRef]
    [Google Scholar]
  37. Östling, J., Goodman, A. & Kjelleberg, S. ( 1991; ). Behavior of Inc-P1 plasmids and a miniMu transposon in a marine Vibrio sp. isolation of starvation inducible lac operon fusions. FEMS Microbiol Ecol 86, 83–94.[CrossRef]
    [Google Scholar]
  38. Pace, N. R., Stahl, D. A., Lane, D. J. & Olsen, G. J. ( 1986; ). The analysis of natural microbial populations by ribosomal RNA sequences. Adv Microb Ecol 9, 1–55.
    [Google Scholar]
  39. Reich, K. A. & Schoolnik, G. K. ( 1994; ). The light organ symbiont Vibrio fischeri possesses a homolog of the Vibrio cholerae transmembrane transcriptional activator ToxR. J Bacteriol 176, 3085–3088.
    [Google Scholar]
  40. Rue, E. L. & Bruland, K. W. ( 1995; ). Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar Chem 50, 117–138.[CrossRef]
    [Google Scholar]
  41. Saludes, D. ( 2004; ). Antibacterial activity and mechanisms of colonisation of Pseudoalteromonas tunicata. PhD thesis, University of New South Wales, Sydney, Australia.
  42. Schwyn, B. & Neilands, J. B. ( 1987; ). Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160, 47–56.[CrossRef]
    [Google Scholar]
  43. Shepard, B. D. & Gilmore, M. S. ( 1999; ). Identification of aerobically and anaerobically induced genes in Enterococcus faecalis by random arbitrarily primed PCR. Appl Environ Microbiol 65, 1470–1476.
    [Google Scholar]
  44. Skovhus, T. L. ( 2004; ). Occurrence and function of marine antifouling Pseudoalteromonas species. PhD thesis, University of Aarhus, Aarhus, Denmark.
  45. Søballe, B. & Poole, R. K. ( 2000; ). Ubiquinone limits oxidative stress in Escherichia coli. Microbiology 146, 787–796.
    [Google Scholar]
  46. Vezzi, A., Campanaro, S., D'Angelo, M. & 10 other authors ( 2005; ). Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307, 1459–1461.[CrossRef]
    [Google Scholar]
  47. Wang, S.-Y., Lauritz, J., Jass, J. & Milton, D. L. ( 2002; ). A ToxR homolog from Vibrio anguillarum serotype 01 regulates its own production, bile resistance, and biofilm formation. J Bacteriol 184, 1630–1639.[CrossRef]
    [Google Scholar]
  48. Wang, S.-Y., Lauritz, J., Jass, J. & Milton, D. L. ( 2003; ). Role for the major outer-membrane protein from Vibrio anguillarum in bile resistance and biofilm formation. Microbiology 149, 1061–1071.[CrossRef]
    [Google Scholar]
  49. Watson, N., Dunyak, D. S., Rosey, E. L., Slonczewski, J. L. & Olson, E. R. ( 1992; ). Identification of elements involved in transcriptional regulation of the Escherichia coli cad operon by external pH. J Bacteriol 174, 530–540.
    [Google Scholar]
  50. Xu, Q., Dziejman, M. & Mekalanos, J. J. ( 2003; ). Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro. Proc Natl Acad Sci U S A 100, 1286–1291.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28740-0
Loading
/content/journal/micro/10.1099/mic.0.28740-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error