1887

Abstract

Type I signal peptidases (SPases) are responsible for the cleavage of signal peptides from secretory proteins. contains four different SPases, denoted SipW, SipX, SipY and SipZ, having at least some differences in their substrate specificity. In this report preprotein binding/processing and protein secretion in single SPase mutants was determined to gain more insight into the substrate specificity of the different SPases and the underlying molecular basis. Results indicated that preproteins do not preferentially bind to a particular SPase, suggesting SPase competition for binding preproteins. This observation, together with the fact that each SPase could process each preprotein tested with a similar efficiency in an assay, suggested that there is no real specificity in substrate binding and processing, and that they are all actively involved in preprotein processing . Although this seems to be the case for some proteins tested, high-level secretion of others was clearly dependent on only one particular SPase demonstrating clear differences in substrate preference at the processing level. Hence, these results strongly suggest that there are additional factors other than the cleavage requirements of the enzymes that strongly affect the substrate preference of SPases .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28734-0
2006-05-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/5/1441.html?itemId=/content/journal/micro/10.1099/mic.0.28734-0&mimeType=html&fmt=ahah

References

  1. Berks B. C., Palmer T., Sargent F. 2003; The Tat protein translocation pathway and its role in microbial physiology. Adv Microb Physiol 47:187–254
    [Google Scholar]
  2. Bernan V., Filpula D., Herber W., Bibb M., Katz E. 1985; The nucleotide sequence of the tyrosinase gene from Streptomyces antibioticus and characterization of the gene product. Gene 37:101–110 [CrossRef]
    [Google Scholar]
  3. Bron S., Bolhuis A., Tjalsma H., Holsappel S., Venema G., van Dijl J. M. 1998; Protein secretion and possible roles for multiple signal peptidases for precursor processing in bacilli. J Biotechnol 64:1–13 [CrossRef]
    [Google Scholar]
  4. Chen L. Y., Leu W. M., Wan K. T., Lee Y. H. 1992; Copper transfer and activation of the Streptomyces apotyrosinase are mediated through a complex formation between apotyrosinase and its trans-activator MelC1. J Biol Chem 267:20100–20107
    [Google Scholar]
  5. Chu H. H., Hoang V., Kreutzmann P., Hofemeister B., Melzer M., Hofemeister J. 2002; Identification and properties of type I-signal peptidases of Bacillus amyloliquefaciens . Eur J Biochem 269:458–469 [CrossRef]
    [Google Scholar]
  6. Cregg K. M., Wilding E. I., Black M. T. 1996; Molecular cloning and expression of the spsB gene encoding an essential type I signal peptidase from Staphylococcus aureus . J Bacteriol 178:5712–5718
    [Google Scholar]
  7. Dalbey R. E., Wickner W. 1985; Leader peptidase catalyzes the release of exported proteins from the outer surface of the Escherichia coli plasma membrane. J Biol Chem 230:15925–15931
    [Google Scholar]
  8. Dev I. K., Ray P. H., Novak P. 1990; Minimum substrate sequence for signal peptidase I of Escherichia coli . J Biol Chem 265:20069–20072
    [Google Scholar]
  9. Fass S. H., Engels J. W. 1996; Influence of specific signal peptide mutations on the expression and secretion of the α -amylase inhibitor tendamistat in Streptomyces lividans . J Biol Chem 272:13152–13158
    [Google Scholar]
  10. Fekkes P., Driessen A. J. 1999; Protein targeting to the bacterial cytoplasmic membrane. Microbiol Mol Biol Rev 63:161–173
    [Google Scholar]
  11. Geukens N., Parro V., Rivas L. A., Mellado R. P., Anné J. 2001; Functional analysis of the Streptomyces lividans type I signal peptidases. Arch Microbiol 176:377–380 [CrossRef]
    [Google Scholar]
  12. Geukens N., Lammertyn E., Van Mellaert L., Engelborghs Y., Mellado R. P., Anné J. 2002; Physical requirements for in vitro processing of the Streptomyces lividans signal peptidases. J Biotechnol 96:79–91 [CrossRef]
    [Google Scholar]
  13. Geukens N., Frederix F., Reekmans G., Lammertyn E., Van Mellaert L., Dehaen W., Maes G., Anné J. 2004; In vitro analysis of type I signal peptidase affinity and specificity for preprotein substrates. Biochem Biophys Res Commun 314:459–467 [CrossRef]
    [Google Scholar]
  14. Jönsson U., Fägerstam L., Ivarsson B. 13 other authors 1991; Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. BioTechniques 11:620–662
    [Google Scholar]
  15. Kendall K., Cullum J. 1984; Cloning and expression of an extracellular agarase from Streptomyces coelicolor A3(2) in Streptomyces lividans 66. Gene 29:315–321 [CrossRef]
    [Google Scholar]
  16. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. 2000 Practical Streptomyces Genetics Norwich, UK: John Innes Centre;
    [Google Scholar]
  17. Korn F, Weingärtner B., Kutzner H. J. 1978; A study of twenty actinophages: morphology, serological relationship and host range. In Genetics of the Actinomycetales Edited by Freechsen E., Tarnak I., Thumin J. H. Stuttgart: Gustave Fischer;
    [Google Scholar]
  18. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:223–229 [CrossRef]
    [Google Scholar]
  19. Leu W. M., Chen L. Y., Liaw L. L., Lee Y. H. 1992; Secretion of the Streptomyces tyrosinase is mediated through its transactivator protein, MelC1. J Biol Chem 267:20108–20113
    [Google Scholar]
  20. Paetzel M., Dalbey R. E., Strynadka N. C. J. 2000; The structure and mechanism of bacterial type I signal peptidases – a novel antibiotic target. Pharm Ther 87:27–49 [CrossRef]
    [Google Scholar]
  21. Palacin A., Parro V., Geukens N., Mellado R. P, Anné J. 2002; SipY is the Streptomyces lividans type I signal peptidase exerting a major effect on protein secretion. J Bacteriol 184:4875–4880 [CrossRef]
    [Google Scholar]
  22. Parro V., Vives C., Godia F., Mellado R. P. 1997; Overproduction and purification of an agarase of bacterial origin. J Biotechnol 58:59–66 [CrossRef]
    [Google Scholar]
  23. Parro V., Schacht S., Mellado R. P, Anné J. 1999; Four genes encoding different type I signal peptidases are organized in a cluster in Streptomyces lividans TK21. Microbiology 145:2255–2263
    [Google Scholar]
  24. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Schacht S., Van Mellaert L., Lammertyn E., Tjalsma H., Bron S, van Dijl J. M, Anné J. 1998; The Sip(Sli) gene of Streptomyces lividans TK24 specifies an unusual signal peptidase with a putative C-terminal transmembrane anchor. DNA Seq 9:79–88
    [Google Scholar]
  26. Schaerlaekens K., Schierova M., Lammertyn E., Geukens N., Van Mellaert L, Anné, J. 2001; Twin-arginine translocation pathway in Streptomyces lividans . J Bacteriol 183:6727–6732 [CrossRef]
    [Google Scholar]
  27. Schaerlaekens K., Van Mellaert L., Lammertyn E., Geukens N., Anné J. 2004; The importance of the Tat-dependent protein secretion pathway in Streptomyces as revealed by phenotypic changes in tat deletion mutants and genome analysis. Microbiology 150:21–31 [CrossRef]
    [Google Scholar]
  28. Shareck F., Roy C., Yaguchi M., Morosoli R., Kluepfel D. 1991; Sequences of three genes specifying xylanases in Streptomyces lividans . Gene 107:75–82 [CrossRef]
    [Google Scholar]
  29. Stenberg E., Persson B., Roos H., Urbaniczky C. 1991; Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. J Col Interf Sc 143:513–551 [CrossRef]
    [Google Scholar]
  30. Strickler J. E., Berka T. R., Gorniak J., Fornwald J., Keys R., Rowland J. J., Rosenberg M., Taylor D. P. 1992; Two novel Streptomyces protein protease inhibitors: purification, activity, cloning, and expression. J Biol Chem 267:3236–3241
    [Google Scholar]
  31. Studier F. W., Moffat B. A. 1986; Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130 [CrossRef]
    [Google Scholar]
  32. Théberge M., Lacaze P., Shareck F., Morosoli R., Kluepfel D. 1992; Purification and characterization of an endoglucanase from Streptomyces lividans 66 and DNA sequence of the gene. Appl Environ Microbiol 58:815–820
    [Google Scholar]
  33. Tjalsma H., Noback M. A., Bron S., Venema G., Yamane K., van Dijl J. M. 1997; Bacillus subtilis contains four closely related type I signal peptidases with overlapping substrate specificities: constitutive and temporally controlled expression of different sip genes. J Biol Chem 272:25983–25992 [CrossRef]
    [Google Scholar]
  34. Tjalsma H., Bolhuis A. 7 other authors van Roosmalen M. L. 1998; Functional analysis of the secretory precursor processing machinery of Bacillus subtilis : identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases. Gene Dev 12:2318–2331 [CrossRef]
    [Google Scholar]
  35. van Dijl J. M., de Jong A., Vehmaanperä J., Venema G., Bron S. 1992; Signal peptidase I of Bacillus subtilis : patterns of conserved amino acids in prokaryotic and eukaryotic type I signal peptidases. EMBO J 11:2819–2828
    [Google Scholar]
  36. Van Mellaert L., Dillen C., Proost P. 7 other authors 1994; Efficient secretion of biologically active mouse tumor necrosis factor alpha by Streptomyces lividans . Gene 150:153–158 [CrossRef]
    [Google Scholar]
  37. van Roosmalen M. L., Geukens N., Jongbloed J. D. H., Tjalsma H., Dubois J.-Y. F., Bron S., van Dijl J. M., Anné J. 2004; Type I signal peptidases of Gram-positive bacteria. Biochem Biophys Acta 1694279–297 [CrossRef]
    [Google Scholar]
  38. Vértesy L., Oeding V., Bender R., Zepf K., Nesemann G. 1984; Tendamistat (HOE 467), a tight-binding α -amylase inhibitor from Streptomyces tendae 4158. Eur J Biochem 141:505–512 [CrossRef]
    [Google Scholar]
  39. Wittmann S., Shareck F., Kluepfel D., Morosoli R. 1994; Purification and characterization of the CelB endoglucanase from Streptomyces lividans 66 and DNA sequence of the encoding gene. Appl Environ Microbiol 60:1701–1703
    [Google Scholar]
  40. Zhang Y. B., Greenberg B., Lacks S. A. 1997; Analysis of a Streptococcus pneumoniae gene encoding signal peptidase I and overproduction of the enzyme. Gene 194:249–255 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.28734-0
Loading
/content/journal/micro/10.1099/mic.0.28734-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error