1887

Abstract

Using a comparative genomics approach, a copper resistance gene cluster has been identified in multiple archaeal genomes. The cluster is predicted to encode a metallochaperone (CopM), a P-type copper-exporting ATPase (CopA) and a novel, archaea-specific transcriptional regulator (CopT) which might control the expression of the genes. Sequence analysis revealed that CopT has an N-terminal DNA-binding helix–turn–helix domain and a C-terminal TRASH domain; TRASH is a novel domain which has recently been proposed to be uniquely involved in metal-binding in sensors, transporters and trafficking proteins in prokaryotes. The present study describes the molecular characterization of the gene cluster in the thermoacidophilic crenarchaeon . The polycistronic transcript was found to accumulate in response to growth-inhibiting copper concentrations, whereas transcript abundance appeared to be constitutive. DNA-binding assays revealed that CopT binds to the promoter at multiple sites, both upstream and downstream of the predicted TATA-BRE site. Copper was found to specifically modulate the affinity of DNA binding by CopT. This study describes a copper-responsive operon in archaea, a new family of archaeal DNA-binding proteins, and supports the idea that this domain plays a prominent role in the archaeal copper response. A model is proposed for copper-responsive transcriptional regulation of the gene cluster.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28724-0
2006-07-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/7/1969.html?itemId=/content/journal/micro/10.1099/mic.0.28724-0&mimeType=html&fmt=ahah

References

  1. Ahmed, H., Ettema, T. J., Tjaden, B., Geerling, A. C., van der Oost, J. & Siebers, B. ( 2005; ). The semi-phosphorylative Entner–Doudoroff pathway in hyperthermophilic archaea: a re-evaluation. Biochem J 390, 539–540.
    [Google Scholar]
  2. Aravind, L. & Koonin, E. V. ( 1999; ). DNA-binding proteins and evolution of transcription regulation in the archaea. Nucleic Acids Res 27, 4658–4670.[CrossRef]
    [Google Scholar]
  3. Baker-Austin, C., Dopson, M., Wexler, M., Sawers, R. G. & Bond, P. L. ( 2005; ). Molecular insight into extreme copper resistance in the extremophilic archaeon ‘Ferroplasma acidarmanus’ Fer1. Microbiology 151, 2637–2646.[CrossRef]
    [Google Scholar]
  4. Bell, S. D. ( 2005; ). Archaeal transcriptional regulation – variation on a bacterial theme? Trends Microbiol 13, 262–265.[CrossRef]
    [Google Scholar]
  5. Bell, S. D., Cairns, S. S., Robson, R. L. & Jackson, S. P. ( 1999a; ). Transcriptional regulation of an archaeal operon in vivo and in vitro. Mol Cell 4, 971–982.[CrossRef]
    [Google Scholar]
  6. Bell, S. D., Kosa, P. L., Sigler, P. B. & Jackson, S. P. ( 1999b; ). Orientation of the transcription preinitiation complex in archaea. Proc Natl Acad Sci U S A 96, 13662–13667.[CrossRef]
    [Google Scholar]
  7. Blindauer, C. A., Harrison, M. D., Robinson, A. K., Parkinson, J. A., Bowness, P. W., Sadler, P. J. & Robinson, N. J. ( 2002; ). Multiple bacteria encode metallothioneins and SmtA-like zinc fingers. Mol Microbiol 45, 1421–1432.[CrossRef]
    [Google Scholar]
  8. Brinkman, A. B., Dahlke, I., Tuininga, J. E. & 7 other authors ( 2000; ). An Lrp-like transcriptional regulator from the archaeon Pyrococcus furiosus is negatively autoregulated. J Biol Chem 275, 38160–38169.[CrossRef]
    [Google Scholar]
  9. Brinkman, A. B., Bell, S. D., Lebbink, R. J., de Vos, W. M. & van der Oost, J. ( 2002; ). The Sulfolobus solfataricus Lrp-like protein LysM regulates lysine biosynthesis in response to lysine availability. J Biol Chem 277, 29537–29549.[CrossRef]
    [Google Scholar]
  10. Brinkman, A. B., Ettema, T. J., de Vos, W. M. & van der Oost, J. ( 2003; ). The Lrp family of transcriptional regulators. Mol Microbiol 48, 287–294.[CrossRef]
    [Google Scholar]
  11. Brown, N. L., Stoyanov, J. V., Kidd, S. P. & Hobman, J. L. ( 2003; ). The MerR family of transcriptional regulators. FEMS Microbiol Rev 27, 145–163.[CrossRef]
    [Google Scholar]
  12. Busenlehner, L. S., Pennella, M. A. & Giedroc, D. P. ( 2003; ). The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol Rev 27, 131–143.[CrossRef]
    [Google Scholar]
  13. Camakaris, J., Voskoboinik, I. & Mercer, J. F. ( 1999; ). Molecular mechanisms of copper homeostasis. Biochem Biophys Res Commun 261, 225–232.[CrossRef]
    [Google Scholar]
  14. Cavet, J. S., Borrelly, G. P. & Robinson, N. J. ( 2003; ). Zn, Cu and Co in cyanobacteria: selective control of metal availability. FEMS Microbiol Rev 27, 165–181.[CrossRef]
    [Google Scholar]
  15. Cobine, P., Wickramasinghe, W. A., Harrison, M. D., Weber, T., Solioz, M. & Dameron, C. T. ( 1999; ). The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor. FEBS Lett 445, 27–30.[CrossRef]
    [Google Scholar]
  16. Cobine, P. A., George, G. N., Jones, C. E., Wickramasinghe, W. A., Solioz, M. & Dameron, C. T. ( 2002a; ). Copper transfer from the Cu(I) chaperone, CopZ, to the repressor, Zn(II)CopY: metal coordination environments and protein interactions. Biochemistry 41, 5822–5829.[CrossRef]
    [Google Scholar]
  17. Cobine, P. A., Jones, C. E. & Dameron, C. T. ( 2002b; ). Role for zinc(II) in the copper(I) regulated protein CopY. J Inorg Biochem 88, 192–196.[CrossRef]
    [Google Scholar]
  18. Degtyarenko, K. ( 2000; ). Bioinorganic motifs: towards functional classification of metalloproteins. Bioinformatics 16, 851–864.[CrossRef]
    [Google Scholar]
  19. Dixit, V., Bini, E., Drozda, M. & Blum, P. ( 2004; ). Mercury inactivates transcription and the generalized transcription factor TFB in the archaeon Sulfolobus solfataricus. Antimicrob Agents Chemother 48, 1993–1999.[CrossRef]
    [Google Scholar]
  20. Edwards, K. J., Bond, P. L., Gihring, T. M. & Banfield, J. F. ( 2000; ). An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287, 1796–1799.[CrossRef]
    [Google Scholar]
  21. Ettema, T. J., Brinkman, A. B., Tani, T. H., Rafferty, J. B. & Van Der Oost, J. ( 2002; ). A novel ligand-binding domain involved in regulation of amino acid metabolism in prokaryotes. J Biol Chem 277, 37464–37468.[CrossRef]
    [Google Scholar]
  22. Ettema, T. J., Huynen, M. A., de Vos, W. M. & van der Oost, J. ( 2003; ). TRASH: a novel metal-binding domain predicted to be involved in heavy-metal sensing, trafficking and resistance. Trends Biochem Sci 28, 170–173.[CrossRef]
    [Google Scholar]
  23. Gregor, D. & Pfeifer, F. ( 2001; ). Use of a halobacterial bgaH reporter gene to analyse the regulation of gene expression in halophilic archaea. Microbiology 147, 1745–1754.
    [Google Scholar]
  24. Grogan, D. W. ( 1989; ). Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains. J Bacteriol 171, 6710–6719.
    [Google Scholar]
  25. Guedon, E. & Helmann, J. D. ( 2003; ). Origins of metal ion selectivity in the DtxR/MntR family of metalloregulators. Mol Microbiol 48, 495–506.[CrossRef]
    [Google Scholar]
  26. Hamza, I., Schaefer, M., Klomp, L. W. & Gitlin, J. D. ( 1999; ). Interaction of the copper chaperone HAH1 with the Wilson disease protein is essential for copper homeostasis. Proc Natl Acad Sci U S A 96, 13363–13368.[CrossRef]
    [Google Scholar]
  27. Harrison, M. D., Jones, C. E., Solioz, M. & Dameron, C. T. ( 2000; ). Intracellular copper routing: the role of copper chaperones. Trends Biochem Sci 25, 29–32.[CrossRef]
    [Google Scholar]
  28. Hochheimer, A., Hedderich, R. & Thauer, R. K. ( 1999; ). The DNA binding protein Tfx from Methanobacterium thermoautotrophicum: structure, DNA binding properties and transcriptional regulation. Mol Microbiol 31, 641–650.[CrossRef]
    [Google Scholar]
  29. Hung, I. H., Casareno, R. L., Labesse, G., Mathews, F. S. & Gitlin, J. D. ( 1998; ). HAH1 is a copper-binding protein with distinct amino acid residues mediating copper homeostasis and antioxidant defense. J Biol Chem 273, 1749–1754.[CrossRef]
    [Google Scholar]
  30. Letunic, I., Copley, R. R., Schmidt, S., Ciccarelli, F. D., Doerks, T., Schultz, J., Ponting, C. P. & Bork, P. ( 2004; ). smart 4.0: towards genomic data integration. Nucleic Acids Res 32, D142–D144.[CrossRef]
    [Google Scholar]
  31. Lutsenko, S. & Kaplan, J. H. ( 1996; ). P-type ATPases. Trends Biochem Sci 21, 467.[CrossRef]
    [Google Scholar]
  32. Mana-Capelli, S., Mandal, A. K. & Arguello, J. M. ( 2003; ). Archaeoglobus fulgidus CopB is a thermophilic Cu2+-ATPase: functional role of its histidine-rich-N-terminal metal binding domain. J Biol Chem 278, 40534–40541.[CrossRef]
    [Google Scholar]
  33. Mercer, J. F. ( 2001; ). The molecular basis of copper-transport diseases. Trends Mol Med 7, 64–69.[CrossRef]
    [Google Scholar]
  34. Multhaup, G., Strausak, D., Bissig, K. D. & Solioz, M. ( 2001; ). Interaction of the CopZ copper chaperone with the CopA copper ATPase of Enterococcus hirae assessed by surface plasmon resonance. Biochem Biophys Res Commun 288, 172–177.[CrossRef]
    [Google Scholar]
  35. Nies, D. H. ( 1999; ). Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51, 730–750.[CrossRef]
    [Google Scholar]
  36. Ouhammouch, M., Dewhurst, R. E., Hausner, W., Thomm, M. & Geiduschek, E. P. ( 2003; ). Activation of archaeal transcription by recruitment of the TATA-binding protein. Proc Natl Acad Sci U S A 100, 5097–5102.[CrossRef]
    [Google Scholar]
  37. Outten, F. W., Outten, C. E., Hale, J. & O'Halloran, T. V. ( 2000; ). Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, cueR. J Biol Chem 275, 31024–31029.[CrossRef]
    [Google Scholar]
  38. Rosenzweig, A. C. ( 2002; ). Metallochaperones: bind and deliver. Chem Biol 9, 673–677.[CrossRef]
    [Google Scholar]
  39. Schelert, J., Dixit, V., Hoang, V., Simbahan, J., Drozda, M. & Blum, P. ( 2004; ). Occurrence and characterization of mercury resistance in the hyperthermophilic archaeon Sulfolobus solfataricus by use of gene disruption. J Bacteriol 186, 427–437.[CrossRef]
    [Google Scholar]
  40. Stoyanov, J. V., Hobman, J. L. & Brown, N. L. ( 2001; ). CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol 39, 502–511.[CrossRef]
    [Google Scholar]
  41. Strausak, D. & Solioz, M. ( 1997; ). CopY is a copper-inducible repressor of the Enterococcus hirae copper ATPases. J Biol Chem 272, 8932–8936.[CrossRef]
    [Google Scholar]
  42. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  43. Tottey, S., Rondet, S. A., Borrelly, G. P., Robinson, P. J., Rich, P. R. & Robinson, N. J. ( 2002; ). A copper metallochaperone for photosynthesis and respiration reveals metal-specific targets, interaction with an importer, and alternative sites for copper acquisition. J Biol Chem 277, 5490–5497.[CrossRef]
    [Google Scholar]
  44. Walker, J. M., Tsivkovskii, R. & Lutsenko, S. ( 2002; ). Metallochaperone Atox1 transfers copper to the NH2-terminal domain of the Wilson's disease protein and regulates its catalytic activity. J Biol Chem 277, 27953–27959.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28724-0
Loading
/content/journal/micro/10.1099/mic.0.28724-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error