1887

Abstract

, the causative agent of swine enzootic pneumonia and a major component of the porcine respiratory disease complex, continues to confound swine producers despite control programmes worldwide. The disease is chronic and self-limiting, but the host is subject to immunopathological changes that potentiate respiratory disease associated with other pathogens. The response of to environmental stress is of interest because of its relevance to virulence mechanisms in other bacterial pathogens. One of these stressors, iron deprivation, is a prominent feature of the host innate immune response, and most certainly impacts growth of mycoplasmas . To study this, microarray technology was applied to the transcriptome analysis of during iron deprivation. An array consisting of 632 of the 698 ORFs in the genome was used to compare the mRNA isolated from organisms grown under normal laboratory conditions with that from organisms subjected to iron deprivation with the chelator 2,2′-dipyridyl. This analysis identified 27 genes that were either up- or down-regulated in response to low-iron growth conditions (<0·01), with an estimated false discovery rate below 10 %. These included genes encoding transport proteins, enzymes involved in energy metabolism, and components of the translation process. Ten of the 27 identified genes had no assigned function. These studies indicate that can respond to changes in environmental conditions, but the mechanism employed remains unknown.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28674-0
2006-04-01
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/4/937.html?itemId=/content/journal/micro/10.1099/mic.0.28674-0&mimeType=html&fmt=ahah

References

  1. Aisen P, Listowsky I. 1980; Iron transport and storage proteins. Annu Rev Biochem 49:357–393 [CrossRef]
    [Google Scholar]
  2. Andrews S. C, Robinson A. K, Rodriquez-Quinones F. 2003; Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237 [CrossRef]
    [Google Scholar]
  3. Baker E. N, Anderson B. F, Baker H. M, Day C. L, Haridas M, Norris G. E, Rumball S. V, Smith C. A, Thomas D. H. 1994; Three-dimensional structure of lactoferrin in various functional states. Adv Exp Med Biol 357:1–12
    [Google Scholar]
  4. Bauminger E. R, Cohen S. G, Labenski-Dekanter F, Levy A, Aster S, Kessel M, Rottem S. 1980; Iron storage in Mycoplasma capricolum . J Bacteriol 141:378–381
    [Google Scholar]
  5. Crosa J. H. 1989; Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol Rev 53:517–530
    [Google Scholar]
  6. Davis J. K, Delozier K. M, Asa D. K, Minion F. C, Cassell G. H. 1980; Interactions between murine alveolar macrophages and Mycoplasma pulmonis in vitro. Infect Immun 29:590–599
    [Google Scholar]
  7. DeBey M. C, Ross R. F. 1994; Ciliostasis and loss of cilia induced by Mycoplasma hyopneumoniae in porcine tracheal organ cultures. Infect Immun 62:5312–5318
    [Google Scholar]
  8. Delany I, Spohn G, Rappuoli R, Scarlato V. 2001; The Fur repressor controls transcription of iron-activated and -repressed genes in Helicobacter pylori . Mol Microbiol 42:1297–1309
    [Google Scholar]
  9. Dudley A. M, Aach J, Steffen M. A, Church G. M. 2002; Measuring absolute expression with microarrays with a calibrated reference sample and an extended signal intensity range. Proc Natl Acad Sci U S A 99:7554–7559 [CrossRef]
    [Google Scholar]
  10. Dudoit S, Yang Y. H, Callow M. J, Speed T. P. 2000; Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. http://www.stat.berkeley.edu/users/terry/zarray/Html/papersindex.html
  11. Earhart C. F. and others 1996; Uptake and metabolism of iron and molybdenum. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp.  1075–1090 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Freundt E. A. 1983; Culture media for classic mycoplasmas. In Methods in Mycoplasmology ,vol. 1, Mycoplasma Characterization pp  127–135 Edited by Razin S., Tully J. G. New York: Academic Press;
    [Google Scholar]
  13. Friis N. F. 1975; Some recommendations concerning primary isolation of Mycoplasma hyopneumoniae and Mycoplasma flocculare , a survey. Nord Veterinaermed 27:337–339
    [Google Scholar]
  14. Hutchison C. A III, Montague M. G. 2002; Mycoplasmas and the minimal genome concept. In Molecular Biology and Pathogenicity of Mycoplasmas pp  221–253 Edited by Razin S., Herrmann H. New York: Kluwer Academic/Plenum;
    [Google Scholar]
  15. Lamont I. L, Beare P. A, Ochsner U, Vasil A. I, Vasil M. L. 2002; Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 99:7072–7077 [CrossRef]
    [Google Scholar]
  16. Livingston C. W, Stair E. L, Underdahl N. R, Mebus C. A. 1972; Pathogenesis of mycoplasmal pneumonia in swine. Am J Vet Res 33:2249–2258
    [Google Scholar]
  17. Macvanin M, Bjorkman J, Eriksson S, Rhen M, Andersson D. I, Hughes D. 2003; Fusidic acid-resistant mutants of Salmonella enterica serovar Typhimurium with low fitness in vivo are defective in RpoS induction. Antimicrob Agents Chemother 47:3743–3749 [CrossRef]
    [Google Scholar]
  18. Madsen M. L, Nettleton D, Thacker E. L, Edwards R, Minion F. C. 2006; Transcriptional profiling of Mycoplasma hyopneumoniae during heat shock using microarrays. Infect Immun 74:167–174 [CrossRef]
    [Google Scholar]
  19. Mare C. J, Switzer W. P. 1965; New species: Mycoplasma hyopneumoniae , a causative agent of virus pig pneumonia. Vet Med Small Anim Clin 60:841–846
    [Google Scholar]
  20. Mebus C. A, Underdahl N. R. 1977; Scanning electron microscopy of trachea and bronchi from gnotobiotic pigs inoculated with Mycoplasma hyopneumoniae . Am J Vet Res 43:1249–1254
    [Google Scholar]
  21. Minion F. C, Lefkowitz E. L, Madsen M. L, Cleary B. J, Swartzell S. M, Mahairas G. G. 2004; The genome sequence of Mycoplasma hyopneumoniae strain 232, the agent of swine mycoplasmosis. J Bacteriol 186:7123–7133 [CrossRef]
    [Google Scholar]
  22. O'Halloran T. V. 1993; Transition metals in control of gene expression. Science 261:715–725 [CrossRef]
    [Google Scholar]
  23. Paustian M. L, May B. J, Kapur V. 2001; Pasteurella multocida gene expression in response to iron limitation. Infect Immun 69:4109–4115 [CrossRef]
    [Google Scholar]
  24. Posey J. E, Gherardini F. C. 2000; Lack of a role for iron in the Lyme disease pathogen. Science 288:1651–1653 [CrossRef]
    [Google Scholar]
  25. Ratledge C, Dover L. G. 2000; Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941 [CrossRef]
    [Google Scholar]
  26. Rodriguez G. M, Smith I. 2003; Mechanisms of iron regulation in mycobacteria: role in physiology and virulence. Mol Microbiol 47:1485–1494 [CrossRef]
    [Google Scholar]
  27. Rosner J. L, Dangi B, Gronenborn A. M, Martin R. G. 2002; Posttranscriptional activation of the transcriptional activator Rob by dipyridyl in Escherichia coli . J Bacteriol 184:1407–1416 [CrossRef]
    [Google Scholar]
  28. Ross R. F. 1992; Mycoplasmal disease. In Diseases of Swine pp  537–551 Edited by Leman A. D., Straw B. E., Mengeling W. L., D'Allaire S., Taylor D. J. Ames: Iowa State University Press;
    [Google Scholar]
  29. Ross R. F. 1993; Mycoplasma-animal pathogens. In Rapid Diagnosis of Mycoplasmas pp.  69–109 Edited by Kahane I., Adoni A. New York: Plenum;
    [Google Scholar]
  30. Salyers A. A, Whitt D. D. 2002 Bacterial Pathogeneis: a Molecular Approach, 2nd edn.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  31. Schaible U. E, Kaufmann S. H. E. 2004; Iron and microbial infection. Nat Rev Microbiol 2:946–953 [CrossRef]
    [Google Scholar]
  32. Storey J. D, Tibshirani R. 2003; Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100:9440–9445 [CrossRef]
    [Google Scholar]
  33. Szczebara F, Dhaenens L, Armand S, Husson M. O. 1999; Regulation of the transcription of genes encoding different virulence factors in Helicobacter pylori by free iron. FEMS Microbiol Lett 175:165–170 [CrossRef]
    [Google Scholar]
  34. Thacker E. L, Halbur P. G, Ross R. F, Thanawongnuwech R, Thacker B. J. 1999; Mycoplasma hyopneumoniae potentiation of porcine reproductive and respiratory syndrome virus-induced pneumonia. J Clin Microbiol 37:620–627
    [Google Scholar]
  35. Tryon V. V, Baseman J. B. 1987; The acquisition of human lactoferrin by Mycoplasma pneumoniae . Microbial Pathog 3:437–443 [CrossRef]
    [Google Scholar]
  36. Wanner B. L. 1996 Phosphorus assimilation and contol of the phosphate regulon. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp.  1362–1381 Edited by Neidhardt F. C. and others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  37. Weinberg E. D. 1978; Iron and Infection. Microbiol Rev 42:45–66
    [Google Scholar]
  38. Weinberg E. D. 1995; Acquisition of iron and other nutrients in vivo. In Virulence Mechanisms of Bacterial Pathogens pp  79–93 Edited by Roth J. A. others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  39. Wolfinger R. D, Gibson G, Wolfinger E. D, Bennett L, Hamadeh H, Bushel P, Afshari C, Paules R. S. 2001; Assessing gene significance from cDNA microarray expression data via mixed models. J Comput Biol 8:625–637 [CrossRef]
    [Google Scholar]
  40. Yang Y. H, Dudoit S, Luu P, Lin D. M, Peng V, Ngai J, Speed T. P. 2002; Normalization for cDNA microarray data: a robust composite method for addressing single and multiple slide systematic variation. Nucleic Acids Res 30:e15 [CrossRef]
    [Google Scholar]
  41. Zalkin H, Nygaard P. 1996 Biosynthesis of purine nucleotides Washington, DC: American Society for Microbiology;
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.28674-0
Loading
/content/journal/micro/10.1099/mic.0.28674-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error