The encapsulation of enterotoxigenic colonization factor CS3 in biodegradable microspheres enhances the murine antibody response following intranasal administration Free

Abstract

The aim of this study was to measure serum and mucosal antibody responses following intranasal administration of biodegradable poly(-lactide--glycolide) (PLGA) microspheres loaded with the CS3 colonization factor isolated from enterotoxigenic (ETEC). The response was compared against that measured in mice similarly administered the native CS3 antigen and in mice co-administered, along with the CS3 antigen, a known mucosal adjuvant, the R192G mutant heat-labile enterotoxin (mLT). The integrity of the CS3 antigen released from the microspheres was maintained as determined by SDS-PAGE and immunoblotting. Native CS3 induced serum and mucosal (bronchoalveolar, small intestinal and faecal) IgG and IgA responses. The co-administration of the mLT mucosal adjuvant significantly enhanced (<0·001) serum and mucosal antibody responses to the CS3 protein. Likewise, the CS3-loaded PLGA microspheres induced significantly greater (<0·001) serum and mucosal antibody responses than native CS3, as well as inducing antibody responses superior to those of the CS3 plus mLT formulation. Following administration of CS3 plus mLT, the mice became distressed (loss of activity, increased huddling, ruffled fur), a situation not seen following administration of the CS3-loaded PLGA microspheres. The results in this trial show that the CS3-loaded PLGA microspheres when administered intranasally to mice caused no observable distress to the mice and significantly (<0·001) enhanced the immunogenicity of the CS3 protein.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28667-0
2006-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/3/779.html?itemId=/content/journal/micro/10.1099/mic.0.28667-0&mimeType=html&fmt=ahah

References

  1. Alves A. M. B, Lásaro M. O, Almeida D. F, Ferreira L. C. S. 1998; Immunoglobulin G subclass responses in mice immunized with plasmid DNA encoding the CFA/I fimbria of enterotoxigenic Escherichia coli . Immunol Lett 62:145–149 [CrossRef]
    [Google Scholar]
  2. Beignon A.-S, Briand J.-P, Rappuoli R, Muller S, Partidos C. D. 2002; The LTR72 mutant of heat-labile enterotoxin of Escherichia coli enhances the ability of peptide antigens to elicit CD4[sup]+[/sup] T cells and secrete gamma interferon after coapplication onto bare skin. Infect Immun 70:3012–3019 [CrossRef]
    [Google Scholar]
  3. Berdal B. P, Olsvik Ø, Omland T. 1981; A sandwich ELISA method for detection of Staphylococcus aureus enterotoxins. Acta Pathol Microbiol Scand Sect B 89:411–415
    [Google Scholar]
  4. Black R. E. 1990; Epidemiology of travelers' diarrhea and relative importance of various pathogens. Rev Infect Dis 12:S73–S79 [CrossRef]
    [Google Scholar]
  5. Boyaka P. N, Ohmura M, Fujihashi K. & 8 other authors; 2003; Chimeras of labile toxin one and cholera toxin retain mucosal adjuvanicity and direct Th cell subsets via their B subunit. J Immunol 170:454–462 [CrossRef]
    [Google Scholar]
  6. Brandtzaeg P. 1985; Cells producing immunoglobulins and other immune factors in human nasal mucosa. Protides Biol Fluids Proc Colloq 32:363–366
    [Google Scholar]
  7. Brandtzaeg P. 1995; Basic mechanisms of mucosal immunity – a major adaptive defense system. Immunologist 3:89–96
    [Google Scholar]
  8. Byrd W, Cassels F. J. 2003; Mucosal immunization of BALB/c mice using enterotoxigenic Escherichia coli colonization factors CFA/I and CS6 administered with and without a mutant heat-labile enterotoxin. Vaccine 21:1884–1893 [CrossRef]
    [Google Scholar]
  9. Byrd W, de Lorimier A, Zheng Z.-R, Cassels F. J. 2005; Microencapsulated subunit vaccine approach to enterotoxigenic Escherichia coli and other mucosal pathogens. Adv Drug Del Rev 57:1362–1380 [CrossRef]
    [Google Scholar]
  10. Coyle A. J, Wagner K, Bertrand C, Tsuyuki S, Bews J, Heusser C. 1996; Central role of immunoglobulin (Ig) E in the induction of lung eosinophil infiltration and T helper 2 cell cytokine production: inhibition by a non-anaphylactogenic anti-IgE antibody. J Exp Med 183:1303–1310 [CrossRef]
    [Google Scholar]
  11. de Lorimier A. J, Byrd W, Hall E. R, Vaughan W. M, Tang D, Roberts Z. J, McQueen C. E, Cassels F. J. 2003; Murine antibody response to intranasally administered enterotoxigenic Escherichia coli colonization factor CS6. Vaccine 21:2548–2555 [CrossRef]
    [Google Scholar]
  12. Desai M. P, Hilfinger J. M, Amidon G. L, Levy R. J, Labhasetwar V. 2000; Immune response with biodegradable nanospheres and alum: studies in rabbits using staphylococcal enterotoxin B-toxoid. J Microencapsul 17:215–225 [CrossRef]
    [Google Scholar]
  13. Dickinson B. L, Clements J. D. 1995; Dissociation of Escherichia coli heat-labile enterotoxin adjuvanticity from ADP-ribosyltransferase activity. Infect Immun 63:1617–1623
    [Google Scholar]
  14. Eldridge J. H, Staas J. K, Meulbroek J. A, McGhee J. R, Tice T. R, Gilley R. M. 1991a; Biodegradable microspheres as a vaccine delivery system. Mol Immunol 28:287–294 [CrossRef]
    [Google Scholar]
  15. Eldridge J. H, Staas J. K, Meulbroek J. A, Tice T. R, Gilley R. M. 1991b; Biodegradable and biocompatible poly(dl-lactide-co-glycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralizing antibodies. Infect Immun 59:2978–2986
    [Google Scholar]
  16. Eyles J. E, Spiers I. D, Williamson E. D, Alpar H. O. 1998a; Analysis of local and systemic immunological responses after intra-tracheal, intra-nasal and intra-muscular administration of microsphere co-encapsulated Yersinia pestis sub-unit vaccines. Vaccine 16:2000–2009 [CrossRef]
    [Google Scholar]
  17. Eyles J. E, Sharp G. J. E, Williamson E. D, Spiers I. D, Alpar H. O. 1998b; Intranasal administration of poly-lactic acid microsphere co-encapsulated Yersinia pestis subunits confers protection from pneumonic plaque in the mouse. Vaccine 16:698–707 [CrossRef]
    [Google Scholar]
  18. Eyles J. E, Williamson E. D, Spiers I. D, Alpar H. O. 2000; Protection studies following bronchopulmonary and intramuscular immunization with Yersinis pestis F1 and V subunit vaccines coencapsulated in biodegradable microspheres: a comparison of efficacy. Vaccine 18:3266–3271 [CrossRef]
    [Google Scholar]
  19. Gaastra W, Svennerholm A.-M. 1996; Colonization factors of human enterotoxigenic Escherichia coli (ETEC). Trends Microbiol 4:444–452 [CrossRef]
    [Google Scholar]
  20. Heritage P. L, Underdown B. J, Arsenault A. L, Snider D. P, McDermott M. R. 1997; Comparison of murine nasal-associated lymphoid tissue and Peyer's patches. Am J Respir Crit Care Med 156:1256–1262 [CrossRef]
    [Google Scholar]
  21. Hodge L. M, Marinaro M, Jones H. P, McGhee J. R, Kiyono H, Simecka J. W. 2001; Immunoglobulin A (IgA) responses and IgE-associated inflammation along the respiratory tract after mucosal but not systemic immunization. Infect Immun 69:2328–2338 [CrossRef]
    [Google Scholar]
  22. Hyams K. C, Bourgeois A. L, Merrell B. R. & 9 other authors (1991). Diarrheal disease during Operation Desert Shield. N Engl J Med 325:1423–1428 [CrossRef]
    [Google Scholar]
  23. Jones D. H. 2003; Microencapsulation of vaccine antigens. In Methods in Molecular Medicine, vol. 87, Vaccine Protocols pp  211–222 Edited by Robinson A., Hudson M. J., Cranage M. P. Totowa, NJ: Humana Press;
    [Google Scholar]
  24. Kersten G. F. A, Gander B. 1996; Biodegradable microspheres as vehicles for antigens. In Concepts in Vaccine Development pp  265–302 Edited by Kaufmann S. H. E. Berlin: Walter de Gruyter;
    [Google Scholar]
  25. Kilian M, Mestecky J, Russell M. W. 1988; Defense mechanisms involving Fc-dependent functions of immunoglobulin A and their subversion by bacterial immunoglobulin A proteases. Microbiol Rev 52:296–303
    [Google Scholar]
  26. Kissel T, Hilbert A. K, Koneberg R, Bittner B. 1997; Microencapsulation of antigens for parenteral vaccine delivery systems. In Antigen Delivery Systems: Immunological and Technological Issues pp  159–190 Edited by Gander B., Merkle H. P., Corradin G. Amsterdam: Harwood Academic Publishers;
    [Google Scholar]
  27. Kiyono H, Bienenstock J, McGhee J. R, Ernst P. B. 1992; The mucosal immune system: features of inductive and effector sites to consider in mucosal immunization and vaccine development. Reg Immunol 4:54–62
    [Google Scholar]
  28. Komase K, Tamura S.-I, Matsuo K, Watanabe K, Hattori N, Odaka A, Suzuki Y, Kurata T, Aizawa C. 1998; Mutants of Escherichia coli heat-labile enterotoxin as an adjuvant for nasal influenza vaccine. Vaccine 16:248–254 [CrossRef]
    [Google Scholar]
  29. Lewis D. H. 1990; Controlled release of bioactive agents from lactide/glycolide polymers. In Biodegradable Polymers as Drug Delivery Systems pp  1–41 Edited by Chasin M., Langer R. New York: Marcel Dekker;
    [Google Scholar]
  30. Manzanec M. B, Lamm M. E, Lyn D, Portner A, Nedrud J. G. 1992; Comparison of IgA versus IgG monoclonal antibodies for passive immunisation of the murine respiratory tract. Virus Res 23:1–12 [CrossRef]
    [Google Scholar]
  31. McGee J. P, Davis S. S, O’Hagan D. T. 1994; The immunogenicity of a model protein entrapped in poly(lactide-co-glycolide) microparticles prepared by a novel phase separation technique. J Control Release 31:55–60 [CrossRef]
    [Google Scholar]
  32. McGhee J. R, Mestecky J, Dertzbaugh M. T, Eldridge J. H, Hirasawa M, Kiyono H. 1992; The mucosal immune system: from fundamental concepts to vaccine development. Vaccine 10:75–88 [CrossRef]
    [Google Scholar]
  33. Mestecky J, Russell M. W, Jackson S, Brown T. A. 1986; The human IgA system: a reassessment. Clin Immunol Immunopathol 40:105–114 [CrossRef]
    [Google Scholar]
  34. Pierce N. F, Reynolds H. Y. 1974; Immunity to experimental cholera: I. Protective effect of humoral IgG antitoxin demonstrated by passive immunization. J Immunol 113:1017–1023
    [Google Scholar]
  35. Rappuoli R, Pizza M, Douce G, Dougan G. 1999; Structure and mucosal adjuvanticity of cholera and Escherichia coli heat-labile enterotoxins. Immunol Today 20:493–500 [CrossRef]
    [Google Scholar]
  36. Robbins J. B, Chu C, Schneerson R. 1992; Hypothesis for vaccine development: protective immunity to enteric diseases caused by nontyphoidal salmonellae and shigellae may be conferred by serum IgG antibodies to the O-specific polysaccharide of their lipopolysaccharides. Clin Infect Dis 15:346–361 [CrossRef]
    [Google Scholar]
  37. Robbins J. B, Schneerson R, Szu S. C. 1995; Perspective: hypothesis: serum IgG antibody is sufficient to confer protection against infectious diseases by inactivating the inoculum. J Infect Dis 171:1387–1398 [CrossRef]
    [Google Scholar]
  38. Robbins J. B, Schneerson R, Szu S. C. 1997; O-specific polysaccharide-protein conjugates for prevention of enteric bacterial diseases. In New Generation Vaccines pp  803–815 Edited by Levin M. M., Woodrow G. C., Kaper J. B., Cobon G. S. New York: Marcel Dekker;
    [Google Scholar]
  39. Rudin A, Johansson E.-L, Bergquist C, Holmgren J. 1998; Differential kinetics and distribution of antibodies in serum and nasal and vaginal secretions after nasal and oral vaccination of humans. Infect Immun 66:3390–3396
    [Google Scholar]
  40. Sasiak A. B, Bolgiano B, Crane D. T, Hockley D. J, Corbel M. J, Sesardic D. 2001; Comparison of in vitro and in vivo methods to study stability of PLGA microencapsulated tetanus toxoid vaccines. Vaccine 19:694–705
    [Google Scholar]
  41. Simecka J. W, Jackson R. J, Kiyono H, McGhee J. R. 2000; Mucosally induced immunoglobulin E-associated inflammation in the respiratory tract. Infect Immun 68:672–679 [CrossRef]
    [Google Scholar]
  42. Sminia T, Kraal G. 1999; Nasal-associated lymphoid tissue. In Mucosal Immunology pp  357–364 Edited by Ogra P. L., Mestecky J., Lamm M. E., Strober W., Bienenstock J., McGhee J. R. San Diego, CA: Academic Press;
    [Google Scholar]
  43. Steinmetz I. 1997; Comparative in vivo analysis of IgA- and IgG-mediated mucosal defense against bacterial pathogens. Behring Inst Mitt 98:53–55
    [Google Scholar]
  44. Takahashi I, Marinaro M, Kiyono H. 7 other authors 1996; Mechanisms for mucosal immunogenicity and adjuvancy of Escherichia coli labile enterotoxin. J Infect Dis 173:627–635 [CrossRef]
    [Google Scholar]
  45. VanCott T. C, Kaminski R. W, Mascola J. R, Kalyanaraman V. S, Wassef N. M, Alving C. R, Ulrich J. T, Lowell G. H, Birx D. L. 1998; HIV-1 neutralizing antibodies in the genital and respiratory tracts of mice intranasally immunized with oligomeric gp160. J Immun 160:2000–2012
    [Google Scholar]
  46. van Ginkel F. W, Jackson R. J, Yuki Y, McGhee J. R. 2000; Cutting edge: the mucosal adjuvant cholera toxin redirects vaccine proteins into olfactory tissues. J Immunol 165:4778–4782 [CrossRef]
    [Google Scholar]
  47. Zuberi R. I, Apgar J. R, Chen S.-S, Liu F.-T. 2000; Role for IgE in airway secretions: IgE immune complexes are more potent inducers than antigen alone of airway inflammation in a murine model. J Immunol 164:2667–2673 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28667-0
Loading
/content/journal/micro/10.1099/mic.0.28667-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed