1887

Abstract

The ATP-dependent Lon (La) protease is ubiquitous in nature and regulates a diverse set of physiological responses in bacteria. In this paper a mutant of the -proteobacterium C58 has been characterized. Unlike mutants of , the mutant of grows very slowly, is not filamentous and exhibits normal resistance to UV irradiation. The mutant retains motility and chemotaxis, produces apparently normal amounts of exopolysacchride, but displays severe defects in cell morphology, with 80 % of the mutant cells appearing Y-shaped. Lon protease of shares high homology with its counterparts in and in , and functionally complements an mutant for defects in morphology and RcsA-mediated regulation of capsular polysaccharide production. Mutations at sites of Lon corresponding to the ATP-binding site and the active site serine of the Lon protease abolish complementation of phenotypes of the and mutants. The nucleotide sequence upstream of contains an element similar to the consensus heat-shock promoter of . Northern and Western blot analyses indicated that expression of is induced by elevated temperature, albeit to a much lower level than that of . The mutant is highly attenuated for virulence, suggesting that Lon may be required for the proper expression, assembly or function of the VirB/D4-mediated T-DNA transfer system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28657-0
2006-04-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/4/1197.html?itemId=/content/journal/micro/10.1099/mic.0.28657-0&mimeType=html&fmt=ahah

References

  1. Amerik, A. Y., Antonov, V. K., Gorbalenya, A. E., Kotova, S. A., Rotanova, T. V. & Shimbarevich, E. V. ( 1991; ). Site-directed mutagenesis of La protease: a catalytically active serine residue. FEBS Lett 287, 211–214.[CrossRef]
    [Google Scholar]
  2. Bernstein, H. D. & Hyndman, J. B. ( 2001; ). Physiological basis for conservation of the signal recognition particle targeting pathway in Escherichia coli. J Bacteriol 183, 2187–2197.[CrossRef]
    [Google Scholar]
  3. Cangelosi, G. A., Best, E. A., Marinetti, G. & Nester, E. W. ( 1991; ). Genetic analysis of Agrobacterium. Methods Enzymol 204, 384–397.
    [Google Scholar]
  4. Chilton, M.-D., Currier, T. C., Farrand, S. K., Bendich, A. J., Gordon, M. P. & Nester, E. W. ( 1974; ). Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc Natl Acad Sci U S A 71, 3672–3676.[CrossRef]
    [Google Scholar]
  5. Chin, D. T., Goff, S. A., Webster, T., Smith, T. & Goldberg, A. L. ( 1988; ). Sequence of the lon gene in Escherichia coli. A heat-shock gene which encodes the ATP-dependent protease La. J Biol Chem 263, 11718–11728.
    [Google Scholar]
  6. Cook, D. M. & Farrand, S. K. ( 1992; ). The oriT region of the Agrobacterium tumefaciens Ti plasmid pTiC58 shares DNA sequence identity with the transfer origins of RSF1010 and RK2/RP4 and with T-region borders. J Bacteriol 174, 6238–6246.
    [Google Scholar]
  7. Ding, Z. & Christie, P. J. ( 2003; ). Agrobacterium tumefaciens twin-arginine-dependent translocation is important for virulence, flagellation, and chemotaxis but not type IV secretion. J Bacteriol 185, 760–771.[CrossRef]
    [Google Scholar]
  8. Drlica, K. & Rouvière-Yaniv, J. ( 1987; ). Histone-like proteins of bacteria. Microbiol Rev 51, 301–319.
    [Google Scholar]
  9. Gill, R. E., Karlok, M. & Benton, D. ( 1993; ). Myxococcus xanthus encodes an ATP-dependent protease which is required for developmental gene transcription and intercellular signaling. J Bacteriol 175, 4538–4544.
    [Google Scholar]
  10. Goldberg, A. L., Moerschell, R. P., Chung, C. H. & Maurizi, M. R. ( 1994; ). ATP-dependent protease La (Lon) from Escherichia coli. Methods Enzymol 244, 350–375.
    [Google Scholar]
  11. Gottesman, S. ( 1996; ). Proteases and their targets in Escherichia coli. Annu Rev Genet 30, 465–506.[CrossRef]
    [Google Scholar]
  12. Gottesman, S. & Zipser, D. ( 1978; ). Deg phenotype of Escherichia coli lon mutants. J Bacteriol 133, 844–851.
    [Google Scholar]
  13. Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. ( 1995; ). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177, 4121–4130.
    [Google Scholar]
  14. Howard-Flanders, P., Simson, E. & Theriot, L. ( 1964; ). A locus that controls filament formation and sensitivity to radiation in Escherichia coli K-12. Genetics 49, 237–246.
    [Google Scholar]
  15. Kahng, L. S. & Shapiro, L. ( 2001; ). The CcrM methyltransferase of Agrobacterium tumefaciens is essential, and its activity is cell cycle regulated. J Bacterial 183, 3065–3075.[CrossRef]
    [Google Scholar]
  16. Luo, Z.-Q., Clemente, T. E. & Farrand, S. K. ( 2001; ). Construction of a derivative of Agrobacterium tumefaciens C58 that does not mutate to tetracycline resistance. Mol Plant Microbe Interact 14, 98–103.[CrossRef]
    [Google Scholar]
  17. Mantis, N. J. & Winans, S. C. ( 1992; ). Characterization of the Agrobacterium tumefaciens heat shock response: evidence for a σ 32-like sigma factor. J Bacteriol 174, 991–997.
    [Google Scholar]
  18. Markovitz, A. ( 1964; ). Regulatory mechanisms for synthesis of capsular polysaccharide in mucoid mutants of Escherichia coli K-12. Proc Natl Acad Sci U S A 51, 239–246.[CrossRef]
    [Google Scholar]
  19. Merriam, J. J., Mathur, R., Maxfield-Boumil, R. & Isberg, R. R. ( 1997; ). Analysis of the Legionella pneumophila fliI gene: intracellular growth of a defined mutant defective for flagellum biosynthesis. Infect Immun 65, 2497–2501.
    [Google Scholar]
  20. Miller, J. ( 1972; ). Experiments in Molecular Genetics, pp. 352–355. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  21. Miranda, A. & Kuzminov, A. ( 2003; ). Chromosomal lesion suppression and removal in Escherichia coli via linear DNA degradation. Genetics 163, 1255–1271.
    [Google Scholar]
  22. Mitsui, H., Sato, T., Sato, Y., Ito, N. & Minamisawa, K. ( 2004; ). Sinorhizobium meliloti RpoH1 is required for effective nitrogen-fixing symbiosis with alfalfa. Mol Gen Genomics 271, 416–425.[CrossRef]
    [Google Scholar]
  23. Mizusawa, S. & Gottesman, S. ( 1983; ). Protein degradation in Escherichia coli: the lon gene controls the stability of the SulA protein. Proc Natl Acad Sci U S A 80, 358–362.[CrossRef]
    [Google Scholar]
  24. Murillo, J., Shen, H., Grehold, D., Sharma, A., Cooksey, D. A. & Keen, N. T. ( 1994; ). Characterization of pPT23B, the plasmid involved in syringolide production by Pseudomonas syringae pv. tomato PT23. Plasmid 31, 275–287.[CrossRef]
    [Google Scholar]
  25. Nair, G. R., Liu, Z. & Binns, A. N. ( 2003; ). Reexamining the role of the accessory plasmid pAtC58 in the virulence of Agrobacterium tumefaciens strain C58. Plant Physiol 133, 989–999.[CrossRef]
    [Google Scholar]
  26. Nakahigashi, K., Ron, E. Z., Yanagi, H. & Yura, T. ( 1999; ). Differential and independent roles of a σ 32 homolog (RpoH) and an HrcA repressor in the heat shock response of Agrobacterium tumefaciens. J Bacteriol 181, 7509–7515.
    [Google Scholar]
  27. Roberston, G. T., Kovach, M. E., Allen, C. A., Ficht, T. A. & Roop, R. M., II ( 2000; ). The Brucella abortus Lon functions as a generalized stress response protease and is required for wild-type virulence in BALB/c mice. Mol Microbiol 35, 577–588.
    [Google Scholar]
  28. Rosen, R., Buttner, K., Becher, D., Nakahigashi, K., Yura, T., Hecker, M. & Ron, E. Z. ( 2002; ). Heat shock proteome of Agrobacterium tumefaciens: evidence for new control systems. J Bacteriol 184, 1772–1778.[CrossRef]
    [Google Scholar]
  29. Schoemaker, J. M., Gayda, R. C. & Markovitz, A. ( 1984; ). Regulation of cell division in Escherichia coli: SOS induction and cellular location of the SulA protein, a key to Lon-associated filamentation and cell death. J Bacteriol 158, 551–561.
    [Google Scholar]
  30. Segal, G. & Ron, E. Z. ( 1995; ). The dnaKJ operon of Agrobacterium tumefaciens: transcriptional analysis and evidence for a new heat shock promoter. J Bacteriol 177, 5952–5958.
    [Google Scholar]
  31. Simon, R., Priefer, U. & Pühler, A. ( 1983; ). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. BioTechnology 1, 784–791.[CrossRef]
    [Google Scholar]
  32. Stewart, B. J., Enos-Berlage, J. L. & McCarter, L. L. ( 1997; ). The lonS gene regulates swarmer cell differentiation of Vibrio parahaemolyticus. J Bacteriol 179, 107–114.
    [Google Scholar]
  33. Summers, M. L., Botero, L. M., Busse, S. C. & Mcdermott, T. R. ( 2000; ). The Sinorhizobium meliloti Lon protease is involved in regulating exopolysaccharide synthesis and is required for nodulation of alfalfa. J Bacteriol 182, 2551–2558.[CrossRef]
    [Google Scholar]
  34. Takaya, A., Suzuki, M., Matsui, H., Tomoyasu, T., Sashinami, H., Nakane, A. & Yamamoto, T. ( 2003; ). Lon, a stress-induced ATP-dependent protease, is critically important for systemic Salmonella enterica serovar Typhimurium infection of mice. J Bacteriol 71, 690–696.
    [Google Scholar]
  35. Watson, B., Currier, T. C., Gordan, M. P., Chilton, M.-D. & Nester, E. W. ( 1975; ). Plasmid required for virulence of Agrobacterium tumefaciens. J Bacteriol 123, 255–264.
    [Google Scholar]
  36. Wise, A. A., Voinov, L. & Binns, A. N. ( 2005; ). Intersubunit complementation of sugar signal transduction in VirA heterodimer and posttranslational regulation of VirA activity in Agrobacterium tumefaciens. J Bacteriol 187, 213–223.[CrossRef]
    [Google Scholar]
  37. Wood, D. W., Setubal, J. C., Kaul, R., Monks, D. E., Kitajima, J. P. & 46 other authors ( 2001; ). The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294, 2317–2323.[CrossRef]
    [Google Scholar]
  38. Wright, R., Stephens, C. & Shapiro, L. ( 1995; ). The CcrM DNA methyltransferase is widespread in the alpha subdivision of proteobacteria, and its essential functions are conserved in Rhizobium meliloti and Caulobacter crescentus. J Bacteriol 179, 5869–5877.
    [Google Scholar]
  39. Wright, R., Stephens, C., Zweiger, G., Shapiro, L. & Alley, M. R. ( 1996; ). Caulobacter Lon protease has a critical role in cell-cycle control of DNA methylation. Genes Dev 10, 1532–1542.[CrossRef]
    [Google Scholar]
  40. Yura, T., Nagai, H. & Mori, H. ( 1993; ). Regulation of the Escherichia coli heat-shock response. Annu Rev Microbiol 47, 321–350.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28657-0
Loading
/content/journal/micro/10.1099/mic.0.28657-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error