1887

Abstract

The major outer-membrane protein of , OprF, is multifunctional. It is a non-specific porin that plays a role in maintenance of cell shape, in growth in a low-osmolarity environment, and in adhesion to various supports or molecules. OprF has been studied extensively for its utility as a vaccine component, its role in antimicrobial drug resistance, and its porin function. The authors have previously shown important differences between the OprF and 16S rDNA phylogenies: isolates split into two quite separate clusters, probably according to their ecological niche. In this study, the evolutionary history of the gene was investigated further. The study of G+C content at the third codon position, synonymous codon usage (codon adaptation index, CAI) and genomic context showed no evidence of horizontal transfer or gene duplication. Similarly, a robust likelihood test of incongruence showed no significant incongruence between the phylogeny and the species phylogeny. In addition, the ratio of nonsynonymous mutations to synonymous mutations ( / ) is high between the different clusters, especially between the two clusters containing isolates, highlighting important modifications in evolutionary constraints during the history of the gene. Since OprF is known as a pleiotropic protein, modifications in evolutionary constraints could have resulted from variations in cryptic functions, correlated with the ecological fingerprint. Finally, relaxed constraints and/or episodic positive evolution, especially for some strains, could have led to a phylogeny reconstruction artifact.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28656-0
2006-04-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/4/1075.html?itemId=/content/journal/micro/10.1099/mic.0.28656-0&mimeType=html&fmt=ahah

References

  1. Aagot, N., Nybroe, O., Nielsen, P. & Johnsen, K. ( 2001; ). An altered Pseudomonas diversity is recovered from soil by using nutrient-poor Pseudomonas-selective soil extract media. Appl Environ Microbiol 67, 5233–5239.[CrossRef]
    [Google Scholar]
  2. Ait Tayeb, L., Ageron, E., Grimont, F. & Grimont, P. A. D. ( 2005; ). Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res Microbiol 156, 763–773.[CrossRef]
    [Google Scholar]
  3. Anzai, Y., Kim, H., Park, J., Wakabayashi, H. & Oyaizu, H. ( 2000; ). Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50, 1563–1589.[CrossRef]
    [Google Scholar]
  4. Bellido, F., Martin, N., Siehnel, R. & Hancock, R. ( 1992; ). Reevaluation, using intact cells, of the exclusion limit and role of porin OprF in Pseudomonas aeruginosa outer membrane permeability. J Bacteriol 174, 5196–5203.
    [Google Scholar]
  5. Bodilis, J., Calbrix, R., Guerillon, J., Merieau, A., Pawlak, B., Orange, N. & Barray, S. ( 2004; ). Phylogenetic relationships between environmental and clinical isolates of Pseudomonas fluorescens and related species deduced from 16S rRNA gene and OprF protein sequences. Syst Appl Microbiol 27, 93–108.[CrossRef]
    [Google Scholar]
  6. Brinkman, F. S., Schoofs, G., Hancock, R. E. & de Mot, R. ( 1999; ). Influence of a putative ECF sigma factor on expression of the major outer membrane protein, OprF, in Pseudomonas aeruginosa and Pseudomonas fluorescens. J Bacteriol 181, 4746–4754.
    [Google Scholar]
  7. Brinkman, F. S., Bains, M. & Hancock, R. E. ( 2000; ). The amino terminus of Pseudomonas aeruginosa outer membrane protein OprF forms channels in lipid bilayer membranes: correlation with a three-dimensional model. J Bacteriol 182, 5251–5255.[CrossRef]
    [Google Scholar]
  8. Dé, E., de Mot, R., Orange, N., Saint, N. & Molle, G. ( 1995; ). Channel-forming properties and structural homology of major outer membrane proteins from Pseudomonas fluorescens MFO and OE 28.3. FEMS Microbiol Let 127, 267–272.[CrossRef]
    [Google Scholar]
  9. Dé, E., Orange, N., Saint, N., Guerillon, J., de Mot, R. & Molle, G. ( 1997; ). Growth temperature dependence of channel size of the major outer- membrane protein (OprF) in psychrotrophic Pseudomonas fluorescens strains. Microbiology 143, 1029–1035.[CrossRef]
    [Google Scholar]
  10. de Mot, R. & Vanderleyden, J. ( 1994; ). A conserved surface-exposed domain in major outer membrane proteins of pathogenic Pseudomonas and Branhamella species shares sequence homology with the calcium-binding repeats of the eukaryotic extracellular matrix protein thrombospondin. Mol Microbiol 13, 379–380.[CrossRef]
    [Google Scholar]
  11. de Mot, R., Proost, P., van Damme, J. & Vanderleyden, J. ( 1992; ). Homology of the root adhesin of Pseudomonas fluorescens OE 28.3 with porin F of P. aeruginosa and P. syringae. Mol Gen Genet 231, 489–493.[CrossRef]
    [Google Scholar]
  12. de Mot, R., Schoofs, G., Roelandt, A., Declerck, P., Proost, P., Van Damme, J. & Vanderleyden, J. ( 1994; ). Molecular characterization of the major outer-membrane protein OprF from plant root-colonizing Pseudomonas fluorescens. Microbiology 140, 1377–1387.[CrossRef]
    [Google Scholar]
  13. Endo, T., Ikeo, K. & Gojobori, T. ( 1996; ). Large-scale search for genes on which positive selection may operate. Mol Biol Evol 13, 685–690.[CrossRef]
    [Google Scholar]
  14. Herbeck, J. T., Wall, D. P. & Wernegreen, J. J. ( 2003; ). Gene expression level influences amino acid usage, but not codon usage, in the tsetse fly endosymbiont Wigglesworthia. Microbiology 149, 2585–2596.[CrossRef]
    [Google Scholar]
  15. Hilario, E., Buckley, T. & Young, J. ( 2004; ). Improved resolution on the phylogenetic relationships among Pseudomonas by the combined analysis of atpD, carA, recA and 16S rDNA. Antonie van Leeuwenhoek 86, 51–64.[CrossRef]
    [Google Scholar]
  16. Jaouen, T., De, E., Chevalier, S. & Orange, N. ( 2004; ). Pore size dependence on growth temperature is a common characteristic of the major outer membrane protein OprF in psychrotrophic and mesophilic Pseudomonas species. Appl Environ Microbiol 70, 6665–6669.[CrossRef]
    [Google Scholar]
  17. Jukes, T. & Cantor, C. ( 1969; ). Evolution of Protein Molecules. Mammalian Protein Metabolism. New York: Academic Press.
  18. Kersters, K., Ludwig, W., Vancanneyt, M., de Vos, P., Gillis, M. & Schleifer, K.-H. ( 1996; ). Recent changes in the classification of the pseudomonads: an overview. Syst Appl Microbiol 19, 465–477.[CrossRef]
    [Google Scholar]
  19. Kimura, M. ( 1980; ). A simple method for estimation of evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  20. Kumar, S., Tamura, K., Jakobsen, I. B. & Nei, M. ( 2001; ). mega2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244–1245.[CrossRef]
    [Google Scholar]
  21. Lafay, B., Atherton, J. C. & Sharp, P. M. ( 2000; ). Absence of translationally selected synonymous codon usage bias in Helicobacter pylori. Microbiology 146, 851–860.
    [Google Scholar]
  22. Messier, W. & Stewart, C.-B. ( 1997; ). Episodic adaptative evolution of primate lysozymes. Nature 385, 151–154.[CrossRef]
    [Google Scholar]
  23. Moore, E. R. B., Mau, M., Arnscheidt, A., Böttger, E., Hutson, R., Collins, M., Van de Peer, Y., Wachter, R. & Timmis, K. N. ( 1996; ). The determination and comparison of the 16S rRNA gene sequences of species of the genus Pseudomonas (sensu stricto) and estimation of the natural intrageneric relationships. Syst Appl Microbiol 19, 478–492.[CrossRef]
    [Google Scholar]
  24. Muto, A. & Osawa, S. ( 1987; ). The guanine and cytosine content of genomic DNA and bacterial evolution. Proc Natl Acad Sci U S A 84, 166–169.[CrossRef]
    [Google Scholar]
  25. Nikaido, H. ( 2003; ). Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67, 593–656.[CrossRef]
    [Google Scholar]
  26. Orange, N. ( 1994; ). Growth temperature regulates the induction of beta-lactamase in Pseudomonas fluorescens through modulation of the outer membrane permeation of a beta-lactam-inducing antibiotic. Microbiology 140, 3125–3130.[CrossRef]
    [Google Scholar]
  27. Palacios, C. & Wernegreen, J. J. ( 2002; ). A strong effect of AT mutational bias on amino acid usage in Buchnera is mitigated at high-expression genes. Mol Biol Evol 19, 1575–1584.[CrossRef]
    [Google Scholar]
  28. Pautsch, A. & Schlulz, G. ( 1998; ). Structure of the outer membrane protein A transmembrane domain. Nat Struct Biol 5, 1013–1017.[CrossRef]
    [Google Scholar]
  29. Ramette, A., Moenne-Loccoz, Y. & Defago, G. ( 2001; ). Polymorphism of the polyketide synthase gene phlD in biocontrol fluorescent pseudomonads producing 2,4-diacetylphloroglucinol and comparison of PhID with plant polyketide synthases. Mol Plant Microbe Interact 14, 639–652.[CrossRef]
    [Google Scholar]
  30. Rawling, E., Martin, N. & Hancock, R. ( 1995; ). Epitope mapping of the Pseudomonas aeruginosa major outer membrane porin protein OprF. Infect Immun 63, 38–42.
    [Google Scholar]
  31. Rawling, E. G., Brinkman, F. S. & Hancock, R. E. ( 1998; ). Roles of the carboxy-terminal half of Pseudomonas aeruginosa major outer membrane protein OprF in cell shape, growth in low-osmolarity medium, and peptidoglycan association. J Bacteriol 180, 3556–3562.
    [Google Scholar]
  32. Rebière-Huët, J., Di Martino, P., Gallet, O. & Hulen, C. ( 1999; ). Interaction of Pseudomonas aeruginosa outer membrane proteins with plasmatic fibronectin. A root for new bacterial adhesins. C R Acad Sci Paris 322, 1071–1080.[CrossRef]
    [Google Scholar]
  33. Rediers, H., Vanderleyden, J. & de Mot, R. ( 2004; ). Azotobacter vinelandii: a Pseudomonas in disguise? Microbiology 150, 1117–1119.[CrossRef]
    [Google Scholar]
  34. Rice, P., Longden, I. & Bleasby, A. ( 2000; ). emboss: the European Molecular Biology Open Software Suite. Trends Genet 16, 276–277.[CrossRef]
    [Google Scholar]
  35. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic tree. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  36. Sharp, P. & Li, W. ( 1987; ). The codon adaptation index – a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15, 1281–1295.[CrossRef]
    [Google Scholar]
  37. Shimodaira, H. & Hasegawa, M. ( 1999; ). Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16, 1114–1116.[CrossRef]
    [Google Scholar]
  38. Tamber, S. & Hancock, R. ( 2004; ). The outer membranes of pseudomonads. In Pseudomonas, pp. 575–601. Edited by J. L. Ramos. New York: Plenum.
  39. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  40. Vermeiren, H., Willems, A., Schoofs, G., De Mot, R., Keijers, V., Hai, W. & Vanderleyden, J. ( 1999; ). The rice inoculant strain Alcaligenes faecalis A15 is a nitrogen-fixing Pseudomonas stutzeri. Syst Appl Microbiol 22, 215–224.[CrossRef]
    [Google Scholar]
  41. von Specht, B., Knapp, B., Muth, G., Broker, M., Hungerer, K., Diehl, K., Massarrat, K., Seemann, A. & Domdey, H. ( 1995; ). Protection of immunocompromised mice against lethal infection with Pseudomonas aeruginosa by active or passive immunization with recombinant P. aeruginosa outer membrane protein F and outer membrane protein I fusion proteins. Infect Immun 63, 1855–1862.
    [Google Scholar]
  42. Woese, C. R. ( 1987; ). Bacterial evolution. Microbiol Rev 51, 221–271.
    [Google Scholar]
  43. Woodruff, W. & Hancock, R. ( 1989; ). Pseudomonas aeruginosa outer membrane protein F: structural role and relationship to the Escherichia coli OmpA protein. J Bacteriol 171, 3304–3309.
    [Google Scholar]
  44. Worgall, S., Krause, A., Rivara, M. & 8 other authors ( 2005; ). Protection against P. aeruginosa with an adenovirus vector containing an OprF epitope in the capsid. J Clin Invest 115, 1281–1289.[CrossRef]
    [Google Scholar]
  45. Wu, L., Estrada, O., Zaborina, O. & 12 other authors ( 2005; ). Recognition of host immune activation by Pseudomonas aeruginosa. Science 309, 774–777.[CrossRef]
    [Google Scholar]
  46. Yamamoto, S., Kasai, H., Arnold, D. L., Jackson, R. W., Vivian, A. & Harayama, S. ( 2000; ). Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146, 2385–2394.
    [Google Scholar]
  47. Yang, Z. & Nielsen, R. ( 2002; ). Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19, 908–917.[CrossRef]
    [Google Scholar]
  48. Yang, Z., Nielsen, R., Goldman, N. & Pedersen, A.-M. K. ( 2000; ). Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155, 431–449.
    [Google Scholar]
  49. Zhang, J., Rosenberg, H. F. & Nei, M. ( 1998; ). Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci U S A 95, 3708–3713.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28656-0
Loading
/content/journal/micro/10.1099/mic.0.28656-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error