1887

Abstract

The mechanism by which soluble proteins, such as carboxypeptidase Y, reach the vacuole in is very similar to the mechanism of lysosomal protein sorting in mammalian cells. Vps10p is a receptor for transport of soluble vacuolar proteins in . , a gene encoding a homologue of /, has been identified and deleted from the fission yeast . Deletion of the gene resulted in missorting and secretion of vacuolar carboxypeptidase Cpy1p, indicating that it is required for targeting Cpy1p to the vacuole. Vps10p (SpVps10p) is a type I transmembrane protein and its C-terminal cytoplasmic tail domain is essential for Cpy1p transport to the vacuole. Cells expressing green fluorescent protein-tagged SpVps10p produced a punctate pattern of fluorescence, indicating that SpVps10p was largely localized in the Golgi compartment. In addition, , and , encoding homologues of the retromer components , and , were identified and deleted. Fluorescence microscopy demonstrated that SpVps10p mislocalized to the vacuolar membrane in these mutants. These results indicate that the , and gene products are required for retrograde transport of SpVps10p from the prevacuolar compartment back to the Golgi in cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28627-0
2006-05-01
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/5/1523.html?itemId=/content/journal/micro/10.1099/mic.0.28627-0&mimeType=html&fmt=ahah

References

  1. Alfa C., Fantes P., Hyams J., McLoed M., Warbrick E. 1993 Experiments with Fission Yeast: a Laboratory Course Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  2. Bankaitis V. A., Johnson L. M., Emr S. D. 1986; Isolation of yeast mutants defective in protein targeting to the vacuole. Proc Natl Acad Sci U S A 83:9075–9079 [CrossRef]
    [Google Scholar]
  3. Cereghino J. L., Marcusson E. G., Emr S. D. 1995; The cytoplasmic tail domain of the vacuolar protein sorting receptor Vps10p and a subset of VPS gene products regulate receptor stability, function, and localization. Mol Biol Cell 6:1089–1102 [CrossRef]
    [Google Scholar]
  4. Cheng H., Sugiura R., Wu W. 7 other authors 2002; Role of the Rab GTP-binding protein Ypt3 in the fission yeast exocytic pathway, and its connection to calcineurin function. Mol Biol Cell 13:2963–2976 [CrossRef]
    [Google Scholar]
  5. Cooper A. A., Stevens T. H. 1996; Vps10p cycles between the late-Golgi and prevacuolar compartments in its function as the sorting receptor for multiple yeast vacuolar hydrolases. J Cell Biol 133:529–541 [CrossRef]
    [Google Scholar]
  6. Costaguta G., Stefan C. J., Bensen E. S., Emr S. D., Payne G. S. 2001; Yeast Gga coat proteins function with clathrin in Golgi to endosome transport. Mol Biol Cell 12:1885–1896 [CrossRef]
    [Google Scholar]
  7. Dell'Angelica E. C., Payne G. S. 2001; Intracellular cycling of lysosomal enzyme receptors: cytoplasmic tails' tales. Cell 106:395–398 [CrossRef]
    [Google Scholar]
  8. Dell'Angelica E. C., Puertollano R., Mullins C., Aguilar R. C., Vargas J. D., Hartnell L. M., Bonifacino J. S. 2000; GGAs: a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J Cell Biol 149:81–94 [CrossRef]
    [Google Scholar]
  9. Dennes A., Madsen P., Nielsen M. S., Petersen C. M., Pohlmann R. 2002; The yeast Vps10p cytoplasmic tail mediates lysosomal sorting in mammalian cells and interacts with human GGAs. J Biol Chem 277:12288–12293 [CrossRef]
    [Google Scholar]
  10. Edgar A. J., Polak J. M. 2000; Human homologues of yeast vacuolar protein sorting 29 and 35. Biochim Biophys Res Commun 277:622–630 [CrossRef]
    [Google Scholar]
  11. Grimm C., Kohli J., Murray J., Maundrell K. 1988; Genetic engineering in Schizosaccharomyces pombe : a system for gene disruption and replacement using the ura4 gene as a selectable marker. Mol Gen Genet 215:81–86 [CrossRef]
    [Google Scholar]
  12. Haft C. R., Bafford R., Lesniak M. A., Barr V. A., Taylor S. I, de la Luz Sierra M. 2000; Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: assembly into multimeric complexes. Mol Biol Cell 11:4105–4116 [CrossRef]
    [Google Scholar]
  13. Hirst J., Lui W. W., Bright N. A., Totty N., Seaman M. N., Robinson M. S. 2000; A family of proteins with γ -adaptin and VHS domains that facilitate trafficking between the trans-Golgi network and the vacuole/lysosome. J Cell Biol 149:67–80 [CrossRef]
    [Google Scholar]
  14. Horazdovsky B. F., Davies B. A., Seaman M. N., McLaughlin S. A., Yoon S., Emr S. D. 1997; A sorting nexin-1 homologue, Vps5p, forms a complex with Vps17p and is required for recycling the vacuolar protein-sorting receptor. Mol Biol Cell 8:1529–1541 [CrossRef]
    [Google Scholar]
  15. Iwaki T., Osawa F., Onishi M., Koga T., Fujita Y., Hosomi A., Tanaka N., Fukui Y., Takegawa K. 2003; Characterization of vps33 +, a gene required for vacuolar biogenesis and protein sorting in Schizosaccharomyces pombe . Yeast 20:845–855 [CrossRef]
    [Google Scholar]
  16. Johnson L. M., Bankaitis V. A., Emr S. D. 1987; Distinct sequence determinants direct intracellular sorting and modification of a yeast vacuolar protease. Cell 48:875–885 [CrossRef]
    [Google Scholar]
  17. Jorgensen M. U., Emr S. D., Winther J. R. 1999; Ligand recognition and domain structure of Vps10p, a vacuolar protein sorting receptor in Saccharomyces cerevisiae . Eur J Biochem 260:461–469
    [Google Scholar]
  18. Klionsky D. J., Herman P. K., Emr S. D. 1990; The fungal vacuole: composition, function and biogenesis. Microbiol Rev 54:266–292
    [Google Scholar]
  19. Koga T., Onishi M., Nakamura Y., Hirata A., Nakamura T., Shimoda C., Iwaki T., Takegawa K., Fukui Y. 2004; Sorting nexin homologues are targets of phosphatidylinositol 3-phosphate in sporulation of Schizosaccharomyces pombe . Genes Cells 9:561–574 [CrossRef]
    [Google Scholar]
  20. Kornfeld S. 1992; Structure and function of the mannose 6-phosphate/insulin-like growth factor II receptors. Annu Rev Biochem 61:307–330 [CrossRef]
    [Google Scholar]
  21. Kornfeld S., Mellman I. 1989; The biogenesis of lysosomes. Annu Rev Cell Biol 5:483–525 [CrossRef]
    [Google Scholar]
  22. Kunkel T. A., Bebenek K., McClary J. 1991; Efficient site-directed mutagenesis using uracil-containing DNA. Methods Enzymol 204:125–139
    [Google Scholar]
  23. Ladds G., Davey J. 2000; Identification of proteases with shared functions to the proprotein processing protease Krp1 in the fission yeast Schizosaccharomyces pombe . Mol Microbiol 38:839–853 [CrossRef]
    [Google Scholar]
  24. Marcusson E. G., Horazdovsky B. F., Cereghino J. L., Gharakhanian E., Emr S. D. 1994; The sorting receptor for yeast vacuolar carboxypeptidase Y is encoded by the VPS10 gene. Cell 77:579–586 [CrossRef]
    [Google Scholar]
  25. Moreno S., Klar A, Nurse P. 1991; Molecular genetic analysis of fission yeast Schizosaccharomyces pombe . Methods Enzymol 194:795–823
    [Google Scholar]
  26. Morwald S., Yamazaki H., Bujo H. 7 other authors 1997; A novel mosaic protein containing LDL receptor elements is highly conserved in humans and chickens. Arterioscler Thromb Vasc Biol 17:996–1002 [CrossRef]
    [Google Scholar]
  27. Munro S. 2001; The MRH domain suggests a shared ancestry for the mannose 6-phosphate receptors and other N-glycan-recognising proteins. Curr Biol 11:R499–R501 [CrossRef]
    [Google Scholar]
  28. Nakamura T., Nakamura-Kubo M., Hirata A., Shimoda C. 2001; The Schizosaccharomyces pombe spo3 + gene is required for assembly of the forespore membrane and genetically interacts with psy1 +-encoding syntaxin-like protein. Mol Biol Cell 12:3955–3972 [CrossRef]
    [Google Scholar]
  29. Nothwehr S. F., Hindes A. E. 1997; The yeast VPS5/GRD2 gene encodes a sorting nexin-1-like protein required for localizing membrane proteins to the late Golgi. J Cell Sci 110:1063–1072
    [Google Scholar]
  30. Nothwehr S. F., Roberts C. J., Stevens T. H. 1993; Membrane protein retention in the yeast Golgi apparatus: dipeptidyl aminopeptidase A is retained by a cytoplasmic signal containing aromatic residues. J Cell Biol 121:1197–1209 [CrossRef]
    [Google Scholar]
  31. Nothwehr S. F., Bruinsma P., Strawn L. A. 1999; Distinct domains within Vps35p mediate the retrieval of two different cargo proteins from the yeast prevacuolar/endosomal compartment. Mol Biol Cell 10:875–890 [CrossRef]
    [Google Scholar]
  32. Nothwehr S. F., Ha S. A., Bruinsma P. 2000; Sorting of yeast membrane proteins into an endosome-to-Golgi pathway involves direct interaction of their cytosolic domains with Vps35p. J Cell Biol 151:297–310 [CrossRef]
    [Google Scholar]
  33. Ohkura H., Kinoshita N., Miyatani S., Toda T., Yanagida M. 1989; The fission yeast dis2 + gene required for chromosome disjoining encodes one of two putative type 1 protein phosphatases. Cell 57:997–1007 [CrossRef]
    [Google Scholar]
  34. Okazaki K., Okazaki N., Kume K., Jinno S., Tanaka K., Okayama H. 1990; High-frequency transformation method and library transducing vectors for cloning mammalian cDNAs by trans-complementation of Schizosaccharomyces pombe . Nucleic Acids Res 18:6485–6489 [CrossRef]
    [Google Scholar]
  35. Petersen C. M., Nielsen M. S., Nykjaer A. 7 other authors 1997; Molecular identification of a novel candidate sorting receptor purified from human brain by receptor-associated protein affinity chromatography. J Biol Chem 272:3599–3605 [CrossRef]
    [Google Scholar]
  36. Pfeffer S. R. 2001; Membrane transport: retromer to the rescue. Curr Biol 11:R109–R111 [CrossRef]
    [Google Scholar]
  37. Piper R. C., Cooper A. A., Yang H., Stevens T. H. 1995; VPS27 controls vacuolar and endocytic traffic through a prevacuolar compartment in Saccharomyces cerevisiae . J Cell Biol 131:603–617 [CrossRef]
    [Google Scholar]
  38. Reddy J. V., Seaman M. N. 2001; Vps26p, a component of retromer, directs the interactions of Vps35p in endosome-to-Golgi retrieval. Mol Biol Cell 12:3242–3256 [CrossRef]
    [Google Scholar]
  39. Robinson J. S., Klionsky D. J., Banta L. M., Emr S. D. 1988; Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol Cell Biol 8:4936–4948
    [Google Scholar]
  40. Rothman J. H., Stevens T. H. 1986; Protein sorting in yeast: mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway. Cell 47:1041–1051 [CrossRef]
    [Google Scholar]
  41. Rothman J. H., Howald I., Stevens T. H. 1989; Characterization of genes required for protein sorting and vacuolar function in the yeast Saccharomyces cerevisiae . EMBO J 8:2057–2065
    [Google Scholar]
  42. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Sato S., Suzuki H., Widyastuti U., Hotta Y., Tabata S. 1994; Identification and characterization of genes induced during sexual differentiation in Schizosaccharomyces pombe . Curr Genet 26:31–37 [CrossRef]
    [Google Scholar]
  44. Schweizer A., Kornfeld S., Rohrer J. 1997; Proper sorting of the cation-dependent mannose 6-phosphate receptor in endosomes depends on a pair of aromatic amino acids in its cytoplasmic tail. Proc Natl Acad Sci U S A 94:14471–14476 [CrossRef]
    [Google Scholar]
  45. Seaman M. N. 2005; Recycle your receptors with retromer. Trends Cell Biol 15:68–75 [CrossRef]
    [Google Scholar]
  46. Seaman M. N., Marcusson E. G., Cereghino J. L., Emr S. D. 1997; Endosome to Golgi retrieval of the vacuolar protein sorting receptor, Vps10p, requires the function of the VPS29, VPS30, and VPS35 gene products. J Cell Biol 137:79–92 [CrossRef]
    [Google Scholar]
  47. Seaman M. N., McCaffery J. M., Emr S. D. 1998; A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J Cell Biol 142:665–681 [CrossRef]
    [Google Scholar]
  48. Suga M., Isobe M., Hatakeyama T. 2000; Cryopreservation of competent intact yeast cells for efficient electroporation. Yeast 16:889–896 [CrossRef]
    [Google Scholar]
  49. Tabuchi M., Iwaihara O., Ohtani Y., Ohuchi N., Sakurai J., Morita T., Iwahara S., Takegawa K. 1997a; Vacuolar protein sorting in fission yeast: cloning, biosynthesis, transport, and processing of carboxypeptidase Y from Schizosaccharomyces pombe . J Bacteriol 179:4179–4189
    [Google Scholar]
  50. Tabuchi M., Tanaka N., Iwahara S, Takegawa K. 1997b; The Schizosaccharomyces pombe gms1 + gene encodes an UDP-galactose transporter homologue required for protein galactosylation. Biochem Biophys Res Commun 232:121–125 [CrossRef]
    [Google Scholar]
  51. Takegawa K., DeWald D. B., Emr S. D. 1995; Schizosaccharomyces pombe Vps34p, a phosphatidylinositol-specific PI 3-kinase essential for normal cell growth and vacuole morphology. J Cell Sci 108:3745–3756
    [Google Scholar]
  52. Takegawa K., Iwaki T., Fujita Y., Morita T., Hosomi A., Tanaka N. 2003a; Vesicle-mediated protein transport pathways to the vacuole in Schizosaccharomyces pombe . Cell Struct Funct 28:399–417 [CrossRef]
    [Google Scholar]
  53. Takegawa K., Tokudomi S., Bhuiyan M. S., Tabuchi M., Fujita Y., Iwaki T., Utsumi S., Tanaka N. 2003b; Heterologous expression and characterization of Schizosaccharomyces pombe vacuolar carboxypeptidase Y in Saccharomyces cerevisiae . Curr Genet 42:252–259
    [Google Scholar]
  54. Tanaka N., Takegawa K. 2001; Functional characterization of Gms1p/UDP-galactose transporter in Schizosaccharomyces pombe . Yeast 18:745–757 [CrossRef]
    [Google Scholar]
  55. Valls L. A., Hunter C. P., Rothman J. H., Stevens T. H. 1987; Protein sorting in yeast: the localization determinant of yeast vacuolar carboxypeptidase Y resides in the propeptide. Cell 48:887–897 [CrossRef]
    [Google Scholar]
  56. Valls L. A., Winther J. R., Stevens T. H. 1990; Yeast carboxypeptidase Y vacuolar targeting signal is defined by four propeptide amino acids. J Cell Biol 111:361–368 [CrossRef]
    [Google Scholar]
  57. van Voorst F., Kielland-Brandt M. C., Winther J. R. 1996; Mutational analysis of the vacuolar sorting signal of procarboxypeptidase Y in yeast shows a low requirement for sequence conservation. J Biol Chem 271:841–846 [CrossRef]
    [Google Scholar]
  58. Vida T. A., Emr S. D. 1995; A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 128:779–792 [CrossRef]
    [Google Scholar]
  59. Westphal V., Marcusson E. G., Winther J. R., Emr S. D., van den Hazel H. B. 1996; Multiple pathways for vacuolar sorting of yeast proteinase A. J Biol Chem 271:11865–11870 [CrossRef]
    [Google Scholar]
  60. Whyte J. R. C., Munro S. 2001; A yeast homolog of the mammalian mannose 6-phosphate receptors contributes to the sorting of vacuolar hydrolases. Curr Biol 11:1074–1078 [CrossRef]
    [Google Scholar]
  61. Wilcox C. A., Redding K., Wright R., Fuller R. S. 1992; Mutation of tyrosine localization signal in the cytosolic tail of yeast Kex2 protease disrupts Golgi retention and results default transport to the vacuole. Mol Biol Cell 3:1353–1371 [CrossRef]
    [Google Scholar]
  62. Yamazaki H., Bujo H., Saito Y. 1997; A novel member of the LDL receptor gene family with eleven binding repeats is structurally related to neural adhesion molecules and a yeast vacuolar protein sorting receptor. J Atheroscler Thromb 4:20–26 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.28627-0
Loading
/content/journal/micro/10.1099/mic.0.28627-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error