1887

Abstract

Selective enrichments yielded bacterial cultures able to utilize the osmolyte -methyltaurine as sole source of carbon and energy or as sole source of fixed nitrogen for aerobic growth. Strain MT1, which degraded -methyltaurine as a sole source of carbon concomitantly with growth, was identified as a strain of . Stoichiometric amounts of methylamine, whose identity was confirmed by matrix-assisted, laser-desorption ionization time-of-flight mass spectrometry, and of sulfate were released during growth. Inducible -methyltaurine dehydrogenase, sulfoacetaldehyde acetyltransferase (Xsc) and a sulfite dehydrogenase could be detected. Taurine dehydrogenase was also present and it was hypothesized that taurine dehydrogenase has a substrate range that includes -methyltaurine. Partial sequences of a -like gene (encoding the putative large component of taurine dehydrogenase) and an gene were obtained by PCR with degenerate primers. Strain N-MT utilized -methyltaurine as a sole source of fixed nitrogen for growth and could also utilize the compound as sole source of carbon. This bacterium was identified as a strain of . This organism also expressed inducible (-methyl)taurine dehydrogenase, Xsc and a sulfite dehydrogenase. The presence of a gene cluster with high identity to a larger cluster from NKNCYSA, which is now known to dissimilate -methyltaurine via Xsc, allowed most of the overall pathway, including transport and excretion, to be defined. -Methyltaurine is thus another compound whose catabolism is channelled directly through sulfoacetaldehyde.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28622-0
2006-04-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/4/1179.html?itemId=/content/journal/micro/10.1099/mic.0.28622-0&mimeType=html&fmt=ahah

References

  1. Allen J. A, Garrett M. R. 1971; Taurine in marine invertebrates. Adv Mar Biol 9:205–253 [CrossRef]
    [Google Scholar]
  2. Altschul S. F, Madden T. L, Zhang Z, Miller W, Lipman D. J, Schäffer A. A, Zhang J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Baker S. C, Ferguson S. J, Ludwig B, Page M. D, Richter O.-M. H, van Spanning R. J. M. 1998; Molecular genetics of the genus Paracoccus : metabolically versatile bacteria with bioenergetic flexibility. Microbiol Mol Biol Rev 62:1046–1078
    [Google Scholar]
  4. Bergmeyer H. U, Graßl M, Walter E.-M. 1983; Phosphotransacetylase. In Methods of Enzymatic Analysis pp  295–296 Edited by Bergmeyer H. U. Weinheim: Verlag Chemie;
    [Google Scholar]
  5. Booth I. R, Edwards M. D, Murray E, Miller S. 2005; The role of bacterial channels in cell physiology. In Bacterial Ion Channels and their Eukaryotic Homologs pp  291–312 Edited by Kubalski A., Martinac B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Brüggemann C, Denger K, Cook A. M, Ruff J. 2004; Enzymes and genes of taurine and isethionate dissimilation in Paracoccus denitrificans . Microbiology 150:805–816 [CrossRef]
    [Google Scholar]
  7. Cook A. M. 1987; Biodegradation of s -triazine xenobiotics. FEMS Microbiol Rev 46:93–116 [CrossRef]
    [Google Scholar]
  8. Cook A. M, Denger K. 2002; Dissimilation of the C[sub]2[/sub] sulfonates. Arch Microbiol 179:1–6 [CrossRef]
    [Google Scholar]
  9. Cook A. M, Denger K. 2006; Metabolism of taurine in microorganisms: a primer in molecular diversity?. Adv Exp Med Biol 583:3–13
    [Google Scholar]
  10. Cook A. M, Hütter R. 1981; s -Triazines as nitrogen sources for bacteria. J Agric Food Chem 29:1135–1143 [CrossRef]
    [Google Scholar]
  11. Cunningham C, Tipton K. F, Dixon H. B. F. 1998; Conversion of taurine into N -chlorotaurine (taurine chloramine) and sulphoacetaldehyde in response to oxidative stress. Biochem J 330:939–945
    [Google Scholar]
  12. Denger K, Ruff J, Rein U, Cook A. M. 2001; Sulfoacetaldehyde sulfo-lyase [EC 4.4.1.12] from Desulfonispora thiosulfatigenes : purification, properties and primary sequence. Biochem J 357:581–586 [CrossRef]
    [Google Scholar]
  13. Denger K, Ruff J, Schleheck D, Cook A. M. 2004a; Rhodococcus opacus expresses the xsc gene to utilize taurine as a carbon source or as a nitrogen source but not as a sulfur source. Microbiology 150:1859–1867 [CrossRef]
    [Google Scholar]
  14. Denger K, Weinitschke S, Hollemeyer K, Cook A. M. 2004b; Sulfoacetate generated by Rhodopseudomonas palustris from taurine. Arch Microbiol 182:254–258
    [Google Scholar]
  15. Denger K, Smits T. H. M, Cook A. M. 2006; l-Cysteate sulfo-lyase, a widespread, pyridoxal 5′-phosphate-coupled desulfonative enzyme purified from Silicibacter pomeroyi DSS-3[sup]T[/sup]. Biochem J (in press) [View Article]
    [Google Scholar]
  16. Desomer J, Crespi M, Van Montagu M. 1991; Illegitimate integration of non-replicative vectors in the genome of Rhodococcus fascians upon electrotransformation as an insertional mutagenesis system. Mol Microbiol 5:2115–2124 [CrossRef]
    [Google Scholar]
  17. Eady R. R, Large P. J. 1968; Purification and properties of an amine dehydrogenase from Pseudomonas AM1 and its role in growth on methylamine. Biochem J 106:245–255
    [Google Scholar]
  18. Ensley B. D, Gibson D. T, Laborde A. L. 1982; Oxidation of naphthalene by a multicomponent enzyme system from Pseudomonas sp. strain NCIB 9816. J Bacteriol 149:948–954
    [Google Scholar]
  19. Gerhardt P, Murray R. G. E, Wood W. A, Krieg N. R. 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  20. Gesellschaft Deutscher Chemiker 1996 German Standard Methods for the Laboratory Examination of Water, Waste Water and Sludge Weinheim: Verlag Chemie;
    [Google Scholar]
  21. Graham D. E, Xu H, White R. H. 2002; Identification of coenzyme M biosynthetic phosphosulfolactate synthase: a new family of sulfonate biosynthesizing enzymes. J Biol Chem 277:13421–13429 [CrossRef]
    [Google Scholar]
  22. Holt J. G, Krieg N. R, Sneath P. H. A, Staley J. T, Williams S. T. 1994 Bergey's Manual of Determinative Bacteriology, 9th edn.. Baltimore: Williams & Wilkins;
    [Google Scholar]
  23. Huxtable R. J. 1992; Physiological actions of taurine. Physiol Rev 72:101–163
    [Google Scholar]
  24. Jones K. M. 1979; Artificial substrates and biochemical reagents. In Data for Biochemical Research pp  436–465 Edited by Dawson R. M. C., Elliott D. C., Elliott W. H., Jones K. M. Oxford: Oxford University Press;
    [Google Scholar]
  25. Kappler U, Bennett B, Rethmeier J, Schwarz G, Deutzmann R, McEwan A. G, Dahl C. 2000; Sulfite : cytochrome c oxidoreductase from Thiobacillus novellus . Purification, characterization, and molecular biology of a heterodimeric member of the sulfite oxidase family. J Biol Chem 275:13202–13212 [CrossRef]
    [Google Scholar]
  26. Kelly D. P, McDonald I. R, Wood A. P. 2000; Proposal for the reclassification of Thiobacillus novellus as Starkeya novella gen nov., comb. nov., in the α -subclass of the Proteobacteria. Int J Syst Evol Microbiol 50:1797–1802
    [Google Scholar]
  27. Kertesz M. A. 2000; Riding the sulfur cycle – metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol Rev 24:135–175
    [Google Scholar]
  28. Khademi S, O'Connell J., 3rd, Remis J, Robles-Colmenares Y, Miercke L. J, Stroud R. M. 2004; Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1·35 Å. Science 305:1587–1594 [CrossRef]
    [Google Scholar]
  29. Lang E, Lang H. 1972; Spezifische Farbreaktionen zum direkten Nachweis der Ameisensäure. Z Anal Chem 260:8–10 [CrossRef]
    [Google Scholar]
  30. Laue H, Cook A. M. 2000; Purification, properties and primary structure of alanine dehydrogenase involved in taurine metabolism in the anaerobe Bilophila wadsworthia . Arch Microbiol 174:162–167 [CrossRef]
    [Google Scholar]
  31. Laue H, Denger K, Cook A. M. 1997; Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU. Appl Environ Microbiol 63:2016–2021
    [Google Scholar]
  32. Mampel J, Maier E, Tralau T, Ruff J, Benz R, Cook A. M. 2004; A novel outer-membrane anion channel (porin) as part of the putatively two-component transport system for p -toluenesulfonate in Comamonas testosteroni T-2. Biochem J 383:91–99 [CrossRef]
    [Google Scholar]
  33. Martinez B, Tomkins J, Wackett L. P, Wing R, Sadowsky M. J. 2001; Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J Bacteriol 183:5684–5697 [CrossRef]
    [Google Scholar]
  34. Moore E. R. B, Mau M, Arnscheidt A, Bottger E. C, Hutson R. A, Collins M. D, VandePeer Y, DeWachter R, Timmis K. N. 1996; The determination and comparison of the 16S rRNA gene sequences of species of the genus Pseudomonas (sensu stricto) and estimation of the natural intrageneric relationships. Syst Appl Microbiol 19:478–492 [CrossRef]
    [Google Scholar]
  35. Novak R. T, Gritzer R. F, Leadbetter E. R, Godchaux W. 2004; Phototrophic utilization of taurine by the purple nonsulfur bacteria Rhodopseudomonas palustris and Rhodobacter sphaeroides . Microbiology 150:1881–1891 [CrossRef]
    [Google Scholar]
  36. Rainey F, Kelly D. P, Stackebrandt E, Burkhardt J, Hiraishi A, Katayama Y, Wood A. P. 1999; A reevaluation of the taxonomy of Paracoccus denitrificans and a proposal for the creation of Paracoccus pantotrophus comb. nov. Int J Syst Bacteriol 49:645–651 [CrossRef]
    [Google Scholar]
  37. Regeard C, Maillard J, Holliger C. 2004; Development of degenerate and specific PCR primers for the detection and isolation of known and putative chloroethene reductive dehalogenase genes. J Microbiol Methods 56:107–118 [CrossRef]
    [Google Scholar]
  38. Reichenbecher W, Kelly D. P, Murrell J. C. 1999; Desulfonation of propanesulfonic acid by Comamonas acidovorans strain P53: evidence for an alkanesulfonate sulfonatase and an atypical sulfite dehydrogenase. Arch Microbiol 172:387–392 [CrossRef]
    [Google Scholar]
  39. Rein U, Gueta R, Denger K, Ruff J, Hollemeyer K, Cook A. M. 2005; Dissimilation of cysteate via 3-sulfolactate sulfo-lyase and a sulfate exporter in Paracoccus pantotrophus NKNCYSA. Microbiology 151:737–747 [CrossRef]
    [Google Scholar]
  40. Ruff J, Denger K, Cook A. M. 2003; Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation. Biochem J 369:275–285 [CrossRef]
    [Google Scholar]
  41. Sambrook J, Fritsch E. F, Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Smits T. H. M, Röthlisberger M, Witholt B, van Beilen J. B. 1999; Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains. Environ Microbiol 1:307–317 [CrossRef]
    [Google Scholar]
  43. Sörbo B. 1987; Sulfate: turbidimetric and nephelometric methods. Methods Enzymol 143:3–6
    [Google Scholar]
  44. Stipanuk M. H. 2004; Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:539–577 [CrossRef]
    [Google Scholar]
  45. Takagi K, Torimura M, Kawaguchi K, Kano K, Ikeda T. 1999; Biochemical and electrochemical characterization of quinohemoprotein amine dehydrogenase from Paracoccus denitrificans . Biochemistry 38:6935–6942 [CrossRef]
    [Google Scholar]
  46. Tholey A, Wittmann C, Kang M. J, Bungert D, Hollemeyer K, Heinzle E. 2002; Derivatization of small biomolecules for optimized matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 37:963–973 [CrossRef]
    [Google Scholar]
  47. Thurnheer T, Leisinger T, Köhler T, Cook A. M. 1986; Orthanilic acid and analogues as carbon sources for bacteria: growth physiology and enzymic desulphonation. J Gen Microbiol 132:1215–1220
    [Google Scholar]
  48. van Beilen J. B, Mourlane F, Seeger M. A, Kovac J, Li Z, Smits T. H. M, Fritsche U, Witholt B. 2003; Cloning of Baeyer-Villiger monooxygenases from Comamonas , Xanthobacter and Rhodococcus using polymerase chain reaction with highly degenerate primers. Environ Microbiol 5:174–182 [CrossRef]
    [Google Scholar]
  49. Weinitschke S, Denger K, Cook A. M, Styp von Rekowski K. 2005; Sulfoacetaldehyde is excreted quantitatively by Acinetobacter calcoaceticus SW1 during growth with taurine as sole source of nitrogen. Microbiology 151:1285–1290 [CrossRef]
    [Google Scholar]
  50. Weisburg W. G, Barns S. M, Pelletier D. A, Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  51. Wilson M. M, Metcalf W. W. 2005; Genetic diversity and horizontal transfer of genes involved in oxidation of reduced phosphorus compounds by Alcaligenes faecalis WM2072. Appl Environ Microbiol 71:290–296 [CrossRef]
    [Google Scholar]
  52. Yancey P. H, Blake W. R, Conley J. 2002; Unusual organic osmolytes in deep-sea animals: adaptations to hydrostatic pressure and other perturbants. Comp Biochem Physiol A Mol Integr Physiol 133:667–676 [CrossRef]
    [Google Scholar]
  53. Yin M, Palmer H. R, Fyfe-Johnson A. L, Bedford J. J, Smith R. A, Yancey P. H. 2000; Hypotaurine, N -methyltaurine, taurine, and glycine betaine as dominant osmolytes of vestimentiferan tubeworms from hydrothermal vents and cold seeps. Physiol Biochem Zool 73:629–637 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28622-0
Loading
/content/journal/micro/10.1099/mic.0.28622-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error