1887

Abstract

The ability to make informed decisions on the suitability of alternative marker loci is central for population and epidemiological investigations. This issue was addressed using as a model population by generating nucleotide sequence data from 33 gene fragments in a representative sample of 30 strains. Supplementing the data with pre-existing multilocus sequence typing data, an intra-species tree based on ∼17·8 kb of sequence was reconstructed and the goodness of fit of each individual gene tree was computed. No strong association was noted between gene function per se and phylogenetic reliability, but it is suggested that candidate loci should possess at least the average degree of nucleotide diversity for all genes in the genome. In the case of this threshold is >1 % mean pairwise diversity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28620-0
2006-05-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/5/1297.html?itemId=/content/journal/micro/10.1099/mic.0.28620-0&mimeType=html&fmt=ahah

References

  1. Aires de Sousa, M. & de Lencastre, H. ( 2004; ). Bridges from hospitals to the laboratory: genetic portraits of methicillin-resistant Staphylococcus aureus clones. FEMS Immunol Med Microbiol 40, 101–111.[CrossRef]
    [Google Scholar]
  2. Bapteste, E., Susko, E., Leigh, J., MacLeod, D., Charlebois, R. L. & Doolittle, W. F. ( 2005; ). Do orthologous gene phylogenies really support tree-thinking? BMC Evol Biol 5, 33.[CrossRef]
    [Google Scholar]
  3. Crisostomo, M. I., Westh, H., Tomasz, A., Chung, M., Oliveira, D. C. & de Lencastre, H. ( 2001; ). The evolution of methicillin resistance in Staphylococcus aureus: similarity of genetic backgrounds in historically early methicillin-susceptible and -resistant isolates and contemporary epidemic clones. Proc Natl Acad Sci U S A 98, 9865–9870.[CrossRef]
    [Google Scholar]
  4. Enright, M. C., Day, N. P., Davies, C. E., Peacock, S. J. & Spratt, B. G. ( 2000; ). Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 38, 1008–1015.
    [Google Scholar]
  5. Feil, E. J., Maiden, M. C., Achtman, M. & Spratt, B. G. ( 1999; ). The relative contributions of recombination and mutation to the divergence of clones of Neisseria meningitidis. Mol Biol Evol 16, 1496–1502.[CrossRef]
    [Google Scholar]
  6. Feil, E. J., Smith, J. M., Enright, M. C. & Spratt, B. G. ( 2000; ). Estimating recombinational parameters in Streptococcus pneumoniae from multilocus sequence typing data. Genetics 154, 1439–1450.
    [Google Scholar]
  7. Feil, E. J., Cooper, J. E., Grundmann, H. & 9 other authors ( 2003; ). How clonal is Staphylococcus aureus? J Bacteriol 185, 3307–3316.[CrossRef]
    [Google Scholar]
  8. Gevers, D., Cohan, F. M., Lawrence, J. G. & 8 other authors ( 2005; ). Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol 3, 733–739.[CrossRef]
    [Google Scholar]
  9. Grundmann, H., Hori, S., Enright, M. C., Webster, C., Tami, A., Feil, E. J. & Pitt, T. ( 2002; ). Determining the genetic structure of the natural population of Staphylococcus aureus: a comparison of multilocus sequence typing with pulsed-field gel electrophoresis, randomly amplified polymorphic DNA analysis, and phage typing. J Clin Microbiol 40, 4544–4546.[CrossRef]
    [Google Scholar]
  10. Hanage, W. P., Fraser, C. & Spratt, B. G. ( 2005; ). Fuzzy species among recombinogenic bacteria. BMC Biol 3, 6.[CrossRef]
    [Google Scholar]
  11. Holden, M. T., Feil, E. J., Lindsay, J. A. & 42 other authors ( 2004; ). Complete genomes of two clinical Staphylococcus aureus strains: Evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci U S A 101, 9786–9791.[CrossRef]
    [Google Scholar]
  12. Huelsenbeck, J. P. & Ronquist, F. ( 2001; ). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.[CrossRef]
    [Google Scholar]
  13. Jolley, K. A., Kalmusova, J., Feil, E. J., Gupta, S., Musilek, M., Kriz, P. & Maiden, M. C. ( 2000; ). Carried meningococci in the Czech Republic: a diverse recombining population. J Clin Microbiol 38, 4492–4498.
    [Google Scholar]
  14. Kuhn, G., Francioli, P. & Blanc, D. S. ( 2006; ). Evidence for clonal evolution among highly polymorphic genes in methicillin-resistant Staphylococcus aureus. J Bacteriol 188, 169–178.[CrossRef]
    [Google Scholar]
  15. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  16. Kunst, F., Ogasawara, N., Moszer, I. & 148 other authors ( 1997; ). The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390, 249–256.[CrossRef]
    [Google Scholar]
  17. Kuroda, M., Ohta, T., Uchiyama, I. & 34 other authors ( 2001; ). Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357, 1225–1240.[CrossRef]
    [Google Scholar]
  18. Leski, T. A. & Tomasz, A. ( 2005; ). Role of penicillin-binding protein 2 (PBP2) in the antibiotic susceptibility and cell wall cross-linking of Staphylococcus aureus: evidence for the cooperative functioning of PBP2, PBP4, and PBP2A. J Bacteriol 187, 1815–1824.[CrossRef]
    [Google Scholar]
  19. Lindsay, J. A., Moore, C. E., Day, N. P., Peacock, S. J., Witney, A. A., Stabler, R. A., Husain, S. E., Butcher, P. D. & Hinds, J. ( 2006; ). Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J Bacteriol 188, 669–676.[CrossRef]
    [Google Scholar]
  20. Maiden, M. C., Bygraves, J. A., Feil, E. & 10 other authors ( 1998; ). Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95, 3140–3145.[CrossRef]
    [Google Scholar]
  21. Melles, D. C., Gorkink, R. F., Boelens, H. A. & 8 other authors ( 2004; ). Natural population dynamics and expansion of pathogenic clones of Staphylococcus aureus. J Clin Invest 114, 1732–1740.[CrossRef]
    [Google Scholar]
  22. Monk, A. B., Curtis, S., Paul, J. & Enright, M. C. ( 2004; ). Genetic analysis of Staphylococcus aureus from intravenous drug user lesions. J Med Microbiol 53, 223–227.[CrossRef]
    [Google Scholar]
  23. Nei, M. & Gojobori, T. ( 1986; ). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3, 418–426.
    [Google Scholar]
  24. Oliveira, D. C., Tomasz, A. & de Lencastre, H. ( 2002; ). Secrets of success of a human pathogen: molecular evolution of pandemic clones of meticillin-resistant Staphylococcus aureus. Lancet Infect Dis 2, 180–189.[CrossRef]
    [Google Scholar]
  25. Pan, E. S., Diep, B. A., Charlebois, E. D., Auerswald, C., Carleton, H. A., Sensabaugh, G. F. & Perdreau-Remington, F. ( 2005; ). Population dynamics of nasal strains of methicillin-resistant Staphylococcus aureus – and their relation to community-associated disease activity. J Infect Dis 192, 811–818.[CrossRef]
    [Google Scholar]
  26. Pinho, M. G., Filipe, S. R., de Lencastre, H. & Tomasz, A. ( 2001; ). Complementation of the essential peptidoglycan transpeptidase function of penicillin-binding protein 2 (PBP2) by the drug resistance protein PBP2A in Staphylococcus aureus. J Bacteriol 183, 6525–6531.[CrossRef]
    [Google Scholar]
  27. Rice, P., Longden, I. & Bleasby, A. ( 2000; ). EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16, 276–277.[CrossRef]
    [Google Scholar]
  28. Robinson, D. A. & Enright, M. C. ( 2003; ). Evolutionary models of the emergence of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 47, 3926–3934.[CrossRef]
    [Google Scholar]
  29. Robinson, D. A. & Enright, M. C. ( 2004; ). Evolution of Staphylococcus aureus by large chromosomal replacements. J Bacteriol 186, 1060–1064.[CrossRef]
    [Google Scholar]
  30. Robinson, D. A., Monk, A. B., Cooper, J. E., Feil, E. J. & Enright, M. C. ( 2005; ). Evolutionary genetics of the accessory gene regulator (agr) locus in Staphylococcus aureus. J Bacteriol 187, 8312–8321.[CrossRef]
    [Google Scholar]
  31. Roche, F. M., Massey, R., Peacock, S. J., Day, N. P., Visai, L., Speziale, P., Lam, A., Pallen, M. & Foster, T. J. ( 2003; ). Characterization of novel LPXTG-containing proteins of Staphylococcus aureus identified from genome sequences. Microbiology 149, 643–654.[CrossRef]
    [Google Scholar]
  32. Rokas, A., Williams, B. L., King, N. & Carroll, S. B. ( 2003; ). Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425, 798–804.[CrossRef]
    [Google Scholar]
  33. Ronquist, F. & Huelsenbeck, J. P. ( 2003; ). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.[CrossRef]
    [Google Scholar]
  34. Sharp, P. M. & Li, W. H. ( 1987; ). The codon adaptation index – a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15, 1281–1295.[CrossRef]
    [Google Scholar]
  35. Shimodaira, H. ( 2002; ). An approximately unbiased test of phylogenetic tree selection. Syst Biol 51, 492–508.[CrossRef]
    [Google Scholar]
  36. Sieradzki, K. & Tomasz, A. ( 1999; ). Gradual alterations in cell wall structure and metabolism in vancomycin-resistant mutants of Staphylococcus aureus. J Bacteriol 181, 7566–7570.
    [Google Scholar]
  37. Spratt, B. G. & Maiden, M. C. ( 1999; ). Bacterial population genetics, evolution and epidemiology. Philos Trans R Soc Lond B Biol Sci 354, 701–710.[CrossRef]
    [Google Scholar]
  38. Swofford, D. L. ( 2000; ). PAUP* – Phylogenetic Analysis Using Parsimony*, and Other Methods. Sunderland, MA: Sinauer Associates.
  39. Vandenesch, F., Naimi, T., Enright, M. C. & 8 other authors ( 2003; ). Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg Infect Dis 9, 978–984.[CrossRef]
    [Google Scholar]
  40. Zeigler, D. R. ( 2003; ). Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53, 1893–1900.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28620-0
Loading
/content/journal/micro/10.1099/mic.0.28620-0
Loading

Data & Media loading...

Supplements

The relationship between GC content (ranks) and the fit to consensus tree (SH score). [ PDF] (22 kb) Polymorphic sites in . [ PDF] (22 kb) Selected strains representing a diverse sample of naturally occurring genotypes (ST) as characterized by MLST. [ PDF] (24 kb) Primer sequences used for PCR and sequencing and the annealing temperature used in the PCR. [ PDF] (45 kb)

PDF

The relationship between GC content (ranks) and the fit to consensus tree (SH score). [ PDF] (22 kb) Polymorphic sites in . [ PDF] (22 kb) Selected strains representing a diverse sample of naturally occurring genotypes (ST) as characterized by MLST. [ PDF] (24 kb) Primer sequences used for PCR and sequencing and the annealing temperature used in the PCR. [ PDF] (45 kb)

PDF

The relationship between GC content (ranks) and the fit to consensus tree (SH score). [ PDF] (22 kb) Polymorphic sites in . [ PDF] (22 kb) Selected strains representing a diverse sample of naturally occurring genotypes (ST) as characterized by MLST. [ PDF] (24 kb) Primer sequences used for PCR and sequencing and the annealing temperature used in the PCR. [ PDF] (45 kb)

PDF

The relationship between GC content (ranks) and the fit to consensus tree (SH score). [ PDF] (22 kb) Polymorphic sites in . [ PDF] (22 kb) Selected strains representing a diverse sample of naturally occurring genotypes (ST) as characterized by MLST. [ PDF] (24 kb) Primer sequences used for PCR and sequencing and the annealing temperature used in the PCR. [ PDF] (45 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error