1887

Abstract

MAP (mitogen-activated protein) kinase-mediated pathways are key elements in sensing and transmitting the response of cells to environmental conditions by the sequential action of phosphorylation events. In the fungal pathogen , different routes have been identified by genetic analysis, and especially by the phenotypic characterization of mutants altered in the Mkc1, Cek1/2 and Hog1 MAP kinases. The cell integrity (or -mediated) pathway is primarily involved in the biogenesis of the cell wall. The HOG pathway participates in the response to osmotic stress while the Cek1 pathway mediates mating and filamentation. Their actual functions are, however, much broader and Mkc1 senses several types of stress, while Hog1 is also responsive to other stress conditions and participates in two morphogenetic programmes: filamentation and chlamydospore formation. Furthermore, it has been recently shown that Cek1 participates in a putative pathway involved in the construction of the cell wall and which seems to be operative under basal conditions. As these stimuli are frequently encountered in the human host, they provide a reasonable explanation for the significant reduction in pathogenicity that several signal transduction mutants show in certain animal models of virulence. MAPK pathways therefore represent an attractive multienzymic system for which novel antifungal therapy could be designed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28616-0
2006-04-01
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/4/905.html?itemId=/content/journal/micro/10.1099/mic.0.28616-0&mimeType=html&fmt=ahah

References

  1. Albertyn, J., Hohmann, S., Thevelein, J. M. & Prior, B. A. ( 1994; ). GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol 14, 4135–4144.
    [Google Scholar]
  2. Alex, L. A., Korch, C., Selitrennikoff, C. P. & Simon, M. I. ( 1998; ). COS1, a two-component histidine kinase that is involved in hyphal development in the opportunistic pathogen Candida albicans. Proc Natl Acad Sci U S A 95, 7069–7073.[CrossRef]
    [Google Scholar]
  3. Alonso-Monge, R., Navarro-García, F., Molero, G., Diez-Orejas, R., Gustin, M., Pla, J., Sánchez, M. & Nombela, C. ( 1999; ). Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J Bacteriol 181, 3058–3068.
    [Google Scholar]
  4. Alonso-Monge, R., Real, E., Wojda, I., Bebelman, J. P., Mager, W. H. & Siderius, M. ( 2001; ). Hyperosmotic stress response and regulation of cell wall integrity in Saccharomyces cerevisiae share common functional aspects. Mol Microbiol 41, 717–730.[CrossRef]
    [Google Scholar]
  5. Alonso-Monge, R., Navarro-García, F., Román, E., Negredo, A. I., Eisman, B., Nombela, C. & Pla, J. ( 2003; ). The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot Cell 2, 351–361.[CrossRef]
    [Google Scholar]
  6. Arana, D. M., Nombela, C., Alonso-Monge, R. & Pla, J. ( 2005; ). The Pbs2 MAP kinase kinase is essential for the oxidative-stress response in the fungal pathogen Candida albicans. Microbiology 151, 1033–1049.[CrossRef]
    [Google Scholar]
  7. Bardwell, L. ( 2004; ). A walk-through of the yeast mating pheromone response pathway. Peptides 25, 1465–1476.[CrossRef]
    [Google Scholar]
  8. Bates, S., MacCallum, D. M., Bertram, G., Munro, C. A., Hughes, H. B., Buurman, E. T., Brown, A. J., Odds, F. C. & Gow, N. A. ( 2005; ). Candida albicans Pmr1p, a secretory pathway P-type Ca2+/Mn2+-ATPase, is required for glycosylation and virulence. J Biol Chem 280, 23408–23415.[CrossRef]
    [Google Scholar]
  9. Bennett, R. J., Uhl, M. A., Miller, M. G. & Johnson, A. D. ( 2003; ). Identification and characterization of a Candida albicans mating pheromone. Mol Cell Biol 23, 8189–8201.[CrossRef]
    [Google Scholar]
  10. Berman, J. & Sudbery, P. E. ( 2002; ). Candida albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet 3, 918–930.
    [Google Scholar]
  11. Bilsland, E., Molin, C., Swaminathan, S., Ramne, A. & Sunnerhagen, P. ( 2004; ). Rck1 and Rck2 MAPKAP kinases and the HOG pathway are required for oxidative stress resistance. Mol Microbiol 53, 1743–1756.[CrossRef]
    [Google Scholar]
  12. Biswas, K. & Morschhauser, J. ( 2005; ). The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans. Mol Microbiol 56, 649–669.[CrossRef]
    [Google Scholar]
  13. Calera, J. A. & Calderone, R. ( 1999; ). Flocculation of hyphae is associated with a deletion in the putative CaHK1 two-component histidine kinase gene from Candida albicans. Microbiology 145, 1431–1442.[CrossRef]
    [Google Scholar]
  14. Calera, J. A., Choi, G. H. & Calderone, R. A. ( 1998; ). Identification of a putative histidine kinase two-component phosphorelay gene (CaHK1) in Candida albicans. Yeast 14, 665–674.[CrossRef]
    [Google Scholar]
  15. Calera, J. A., Zhao, X. J. & Calderone, R. ( 2000; ). Defective hyphal development and avirulence caused by a deletion of the SSK1 response regulator gene in Candida albicans. Infect Immun 68, 518–525.[CrossRef]
    [Google Scholar]
  16. Chauhan, N., Inglis, D., Román, E., Pla, J., Li, D., Calera, J. A. & Calderone, R. ( 2003; ). Candida albicans response regulator gene SSK1 regulates a subset of genes whose functions are associated with cell wall biosynthesis and adaptation to oxidative stress. Eukaryot Cell 2, 1018–1024.[CrossRef]
    [Google Scholar]
  17. Chen, J., Wang, Q. & Chen, J. Y. ( 2000; ). CEK2, a novel MAPK from Candida albicans complement the mating defect of fus3/kss1 mutant. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 32, 299–304.
    [Google Scholar]
  18. Chen, J., Chen, J., Lane, S. & Liu, H. ( 2002; ). A conserved mitogen-activated protein kinase pathway is required for mating in Candida albicans. Mol Microbiol 46, 1335–1344.[CrossRef]
    [Google Scholar]
  19. Chen, H., Fujita, M., Feng, Q., Clardy, J. & Fink, G. R. ( 2004; ). Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci U S A 101, 5048–5052.[CrossRef]
    [Google Scholar]
  20. Cid, V. J., Durán, A., del Rey, F., Snyder, M. P., Nombela, C. & Sánchez, M. ( 1995; ). Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol Rev 59, 345–386.
    [Google Scholar]
  21. Csank, C., Makris, C., Meloche, S., Schröppel, K., Röllinghoff, M., Dignard, D., Thomas, D. Y. & Whiteway, M. ( 1997; ). Derepressed hyphal growth and reduced virulence in a VH1 family-related protein phosphatase mutant of the human pathogen Candida albicans. Mol Biol Cell 8, 2539–2551.[CrossRef]
    [Google Scholar]
  22. Csank, C., Schröppel, K., Leberer, E., Harcus, D., Mohamed, O., Meloche, S., Thomas, D. Y. & Whiteway, M. ( 1998; ). Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect Immun 66, 2713–2721.
    [Google Scholar]
  23. Cullen, P. J., Schultz, J., Horecka, J., Stevenson, B. J., Jigami, Y. & Sprague, G. F., Jr ( 2000; ). Defects in protein glycosylation cause SHO1-dependent activation of a STE12 signaling pathway in yeast. Genetics 155, 1005–1018.
    [Google Scholar]
  24. Davis, D. ( 2003; ). Adaptation to environmental pH in Candida albicans and its relation to pathogenesis. Curr Genet 44, 1–7.[CrossRef]
    [Google Scholar]
  25. De Backer, M. D., Magee, P. T. & Pla, J. ( 2000; ). Recent developments in molecular genetics of Candida albicans. Annu Rev Microbiol 54, 463–498.[CrossRef]
    [Google Scholar]
  26. de Nadal, E., Alepuz, P. M. & Posas, F. ( 2002; ). Dealing with osmostress through MAP kinase activation. EMBO Rep 3, 735–740.[CrossRef]
    [Google Scholar]
  27. Diez-Orejas, R., Molero, G., Navarro-García, F., Pla, J., Nombela, C. & Sánchez-Pérez, M. ( 1997; ). Reduced virulence of Candida albicans MKC1 mutants: a role for a mitogen-activated protein kinase in pathogenesis. Infect Immun 65, 833–837.
    [Google Scholar]
  28. Du, C., Calderone, R., Richert, J. & Li, D. ( 2005; ). Deletion of the SSK1 response regulator gene in Candida albicans contributes to enhanced killing by human polymorphonuclear neutrophils. Infect Immun 73, 865–871.[CrossRef]
    [Google Scholar]
  29. Eisman, B., Alonso-Monge, R., Román, E., Arana, D. M., Nombela, C. & Pla, J. ( 2006; ). The Cek1 and Hog1 mitogen-activated protein kinases play complementary roles in cell wall biogenesis and chlamydospore formation in the fungal pathogen Candida albicans. Eukaryot Cell 5, 347–358.[CrossRef]
    [Google Scholar]
  30. Elion, E. A. ( 2000; ). Pheromone response, mating and cell biology. Curr Opin Microbiol 3, 573–581.[CrossRef]
    [Google Scholar]
  31. Elion, E. A. ( 2001; ). The Ste5p scaffold. J Cell Sci 114, 3967–3978.
    [Google Scholar]
  32. Fox, D. & Smulian, A. G. ( 1999; ). Mitogen-activated protein kinase Mkp1 of Pneumocystis carinii complements the slt2Δ defect in the cell integrity pathway of Saccharomyces cerevisiae. Mol Microbiol 34, 451–462.[CrossRef]
    [Google Scholar]
  33. Gimeno, C. J., Ljungdahl, P. O., Styles, C. A. & Fink, G. R. ( 1992; ). Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68, 1077–1090.[CrossRef]
    [Google Scholar]
  34. Guhad, F. A., Jensen, H. E., Aalbaek, B., Csank, C., Mohamed, O., Harcus, D., Thomas, D. Y., Whiteway, M. & Hau, J. ( 1998; ). Mitogen-activated protein kinase-defective Candida albicans is avirulent in a novel model of localized murine candidiasis. FEMS Microbiol Lett 166, 135–139.[CrossRef]
    [Google Scholar]
  35. Heinisch, J. J., Lorberg, A., Schmitz, H. P. & Jacoby, J. J. ( 1999; ). The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in Saccharomyces cerevisiae. Mol Microbiol 32, 671–680.[CrossRef]
    [Google Scholar]
  36. Hohmann, S. ( 2002; ). Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66, 300–372.[CrossRef]
    [Google Scholar]
  37. Hornby, J. M., Jensen, E. C., Lisec, A. D., Tasto, J. J., Jahnke, B., Shoemaker, R., Dussault, P. & Nickerson, K. W. ( 2001; ). Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67, 2982–2992.[CrossRef]
    [Google Scholar]
  38. Hull, C. M., Raisner, R. M. & Johnson, A. D. ( 2000; ). Evidence for mating of the “asexual” yeast Candida albicans in a mammalian host. Science 289, 307–310.[CrossRef]
    [Google Scholar]
  39. Jiang, B., Ram, A. F. J., Sheraton, J., Klis, F. M. & Bussey, H. ( 1995; ). Regulation of cell wall beta-glucan assembly: PTC1 negatively affects PBS2 action in a pathway that includes modulation of EXG1 transcription. Mol Gen Genet 248, 260–269.[CrossRef]
    [Google Scholar]
  40. Johnson, A. ( 2003; ). The biology of mating in Candida albicans. Nat Rev Microbiol 1, 106–116.[CrossRef]
    [Google Scholar]
  41. Kapteyn, J. C., Ter Riet, B., Vink, E., Blad, S., De Nobel, H., van den Ende, H. & Klis, F. M. ( 2001; ). Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall. Mol Microbiol 39, 469–479.[CrossRef]
    [Google Scholar]
  42. Kayingo, G. & Wong, B. ( 2005; ). The MAP kinase Hog1p differentially regulates stress-induced production and accumulation of glycerol and d-arabitol in Candida albicans. Microbiology 151, 2987–2999.[CrossRef]
    [Google Scholar]
  43. Kruppa, M., Goins, T., Cutler, J. E. & 7 other authors ( 2003; ). The role of the Candida albicans histidine kinase (CHK1) gene in the regulation of cell wall mannan and glucan biosynthesis. FEMS Yeast Res 3, 289–299.
    [Google Scholar]
  44. Kruppa, M., Jabra-Rizk, M. A., Meiller, T. F. & Calderone, R. ( 2004; ). The histidine kinases of Candida albicans: regulation of cell wall mannan biosynthesis. FEMS Yeast Res 4, 409–416.[CrossRef]
    [Google Scholar]
  45. Kultz, D. & Burg, M. ( 1998; ). Evolution of osmotic stress signaling via MAP kinase cascades. J Exp Biol 201, 3015–3021.
    [Google Scholar]
  46. Kumamoto, C. A. ( 2005; ). A contact-activated kinase signals Candida albicans invasive growth and biofilm development. Proc Natl Acad Sci U S A 102, 5576–5581.[CrossRef]
    [Google Scholar]
  47. Leberer, E., Harcus, D., Broadbent, I. D. & 7 other authors ( 1996; ). Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc Natl Acad Sci U S A 93, 13217–13222.[CrossRef]
    [Google Scholar]
  48. Lee, B. N. & Elion, E. A. ( 1999; ). The MAPKKK Ste11 regulates vegetative growth through a kinase cascade of shared signaling components. Proc Natl Acad Sci U S A 96, 12679–12684.[CrossRef]
    [Google Scholar]
  49. Lee, C. M., Nantel, A., Jiang, L., Whiteway, M. & Shen, S. H. ( 2004; ). The serine/threonine protein phosphatase SIT4 modulates yeast-to-hypha morphogenesis and virulence in Candida albicans. Mol Microbiol 51, 691–709.[CrossRef]
    [Google Scholar]
  50. Li, D., Gurkovska, V., Sheridan, M., Calderone, R. & Chauhan, N. ( 2004; ). Studies on the regulation of the two-component histidine kinase gene CHK1 in Candida albicans using the heterologous lacZ reporter gene. Microbiology 150, 3305–3313.[CrossRef]
    [Google Scholar]
  51. Liu, H. ( 2001; ). Transcriptional control of dimorphism in Candida albicans. Curr Opin Microbiol 4, 728–735.[CrossRef]
    [Google Scholar]
  52. Liu, H., Köhler, J. & Fink, G. R. ( 1994; ). Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266, 1723–1726.[CrossRef]
    [Google Scholar]
  53. Lo, H. J., Kohler, J. R., DiDomenico, B., Loebenberg, D., Cacciapuoti, A. & Fink, G. R. ( 1997; ). Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939–949.[CrossRef]
    [Google Scholar]
  54. Lockhart, S. R., Zhao, R., Daniels, K. J. & Soll, D. R. ( 2003; ). Alpha-pheromone-induced “shmooing” and gene regulation require white-opaque switching during Candida albicans mating. Eukaryot Cell 2, 847–855.[CrossRef]
    [Google Scholar]
  55. Magee, B. B. & Magee, P. T. ( 2000; ). Induction of mating in Candida albicans by construction of MTLa and MTLα strains. Science 289, 310–313.[CrossRef]
    [Google Scholar]
  56. Magee, B. B., Legrand, M., Alarco, A. M., Raymond, M. & Magee, P. T. ( 2002; ). Many of the genes required for mating in Saccharomyces cerevisiae are also required for mating in Candida albicans. Mol Microbiol 46, 1345–1351.[CrossRef]
    [Google Scholar]
  57. Marcil, A., Harcus, D., Thomas, D. Y. & Whiteway, M. ( 2002; ). Candida albicans killing by RAW 264.7 mouse macrophage cells: effects of Candida genotype, infection ratios, and gamma interferon treatment. Infect Immun 70, 6319–6329.[CrossRef]
    [Google Scholar]
  58. Mösch, H. U., Roberts, R. L. & Fink, G. R. ( 1996; ). Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93, 5352–5356.[CrossRef]
    [Google Scholar]
  59. Nagahashi, S., Mio, T., Ono, N., Yamada-Okabe, T., Arisawa, M., Bussey, H. & Yamada-Okabe, H. ( 1998; ). Isolation of CaSLN1 and CaNIK1, the genes for osmosensing histidine kinase homologues, from the pathogenic fungus Candida albicans. Microbiology 144, 425–432.[CrossRef]
    [Google Scholar]
  60. Navarro-García, F., Sanchez, M., Pla, J. & Nombela, C. ( 1995; ). Functional characterization of the MKC1 gene of Candida albicans, which encodes a mitogen-activated protein kinase homolog related to cell integrity. Mol Cell Biol 15, 2197–2206.
    [Google Scholar]
  61. Navarro-García, F., Alonso-Monge, R., Rico, H., Pla, J., Sentandreu, R. & Nombela, C. ( 1998; ). A role for the MAP kinase gene MKC1 in cell wall construction and morphological transitions in Candida albicans. Microbiology 144, 411–424.[CrossRef]
    [Google Scholar]
  62. Navarro-García, F., Eisman, B., Fiuza, S. M., Nombela, C. & Pla, J. ( 2005; ). The MAP kinase Mkc1p is activated under different stress conditions in Candida albicans. Microbiology 151, 2737–2749.[CrossRef]
    [Google Scholar]
  63. Nobile, C. J., Bruno, V. M., Richard, M. L., Davis, D. A. & Mitchell, A. P. ( 2003; ). Genetic control of chlamydospore formation in Candida albicans. Microbiology 149, 3629–3637.[CrossRef]
    [Google Scholar]
  64. Odds, F. C., Calderone, R., Hube, B. & Nombela, C. ( 2003; ). Candida albicans: views and suggestions from a peer-group workshop. ASM News 69, 54–55.
    [Google Scholar]
  65. O'Rourke, S. M. & Herskowitz, I. ( 1998; ). The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes Dev 12, 2874–2886.[CrossRef]
    [Google Scholar]
  66. Palecek, S. P., Parikh, A. S. & Kron, S. J. ( 2002; ). Sensing, signalling and integrating physical processes during Saccharomyces cerevisiae invasive and filamentous growth. Microbiology 148, 893–907.
    [Google Scholar]
  67. Paravicini, G., Mendoza, A., Antonsson, B., Cooper, M., Losberger, C. & Payton, M. ( 1996; ). The Candida albicans PKC1 gene encodes a protein kinase C homolog necessary for cellular integrity but not dimorphism. Yeast 12, 741–756.[CrossRef]
    [Google Scholar]
  68. Posas, F. & Saito, H. ( 1997; ). Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science 276, 1702–1705.[CrossRef]
    [Google Scholar]
  69. Posas, F., Takekawa, M. & Saito, H. ( 1998a; ). Signal transduction by MAP kinase cascades in budding yeast. Curr Opin Microbiol 1, 175–182.[CrossRef]
    [Google Scholar]
  70. Posas, F., Witten, E. A. & Saito, H. ( 1998b; ). Requirement of STE50 for osmostress-induced activation of the STE11 mitogen-activated protein kinase kinase kinase in the high-osmolarity glycerol response pathway. Mol Cell Biol 18, 5788–5796.
    [Google Scholar]
  71. Posas, F., Chambers, J. R., Heyman, J. A., Hoeffler, J. P., de Nadal, E. & Ariño, J. ( 2000; ). The transcriptional response of yeast to saline stress. J Biol Chem 275, 17249–17255.[CrossRef]
    [Google Scholar]
  72. Raitt, D. C., Posas, F. & Saito, H. ( 2000; ). Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Sho1-dependent activation of the Hog1 MAPK pathway. EMBO J 19, 4623–4631.[CrossRef]
    [Google Scholar]
  73. Rep, M., Proft, M., Remize, F., Tamas, M., Serrano, R., Thevelein, J. M. & Hohmann, S. ( 2001; ). The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Mol Microbiol 40, 1067–1083.[CrossRef]
    [Google Scholar]
  74. Roman, E., Nombela, C. & Pla, J. ( 2005; ). The Sho1 adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal pathogen Candida albicans. Mol Cell Biol 25, 10611–10627.[CrossRef]
    [Google Scholar]
  75. San José, C., Alonso-Monge, R., Pérez-Díaz, R. M., Pla, J. & Nombela, C. ( 1996; ). The mitogen-activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans. J Bacteriol 178, 5850–5852.
    [Google Scholar]
  76. Sato, T., Watanabe, T., Mikami, T. & Matsumoto, T. ( 2004; ). Farnesol, a morphogenetic autoregulatory substance in the dimorphic fungus Candida albicans, inhibits hyphae growth through suppression of a mitogen-activated protein kinase cascade. Biol Pharm Bull 27, 751–752.[CrossRef]
    [Google Scholar]
  77. Schroppel, K., Sprosser, K., Whiteway, M., Thomas, D. Y., Rollinghoff, M. & Csank, C. ( 2000; ). Repression of hyphal proteinase expression by the mitogen-activated protein (MAP) kinase phosphatase Cpp1p of Candida albicans is independent of the MAP kinase Cek1p. Infect Immun 68, 7159–7161.[CrossRef]
    [Google Scholar]
  78. Schwartz, M. A. & Madhani, H. D. ( 2004; ). Principles of MAP kinase signaling specificity in Saccharomyces cerevisiae. Annu Rev Genet 38, 725–748.[CrossRef]
    [Google Scholar]
  79. Singh, K. K. ( 2000; ). The Saccharomyces cerevisiae Sln1p-Ssk1p two-component system mediates response to oxidative stress and in an oxidant-specific fashion. Free Radic Biol Med 29, 1043–1050.[CrossRef]
    [Google Scholar]
  80. Smith, D. A., Nicholls, S., Morgan, B. A., Brown, A. J. & Quinn, J. ( 2004; ). A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Mol Biol Cell 15, 4179–4190.[CrossRef]
    [Google Scholar]
  81. Sonneborn, A., Bockmuhl, D. P. & Ernst, J. F. ( 1999; ). Chlamydospore formation in Candida albicans requires the Efg1p morphogenetic regulator. Infect Immun 67, 5514–5517.
    [Google Scholar]
  82. Torres, L., Martín, H., García-Sáez, M. I., Arroyo, J., Molina, M., Sánchez, M. & Nombela, C. ( 1991; ). A protein kinase gene complements the lytic phenotype of Saccharomyces cerevisiae lyt2 mutants. Mol Microbiol 5, 2845–2854.[CrossRef]
    [Google Scholar]
  83. Ushinsky, S. C., Harcus, D., Ash, J., Dignard, D., Marcil, A., Morchhauser, J., Thomas, D. Y., Whiteway, M. & Leberer, E. ( 2002; ). CDC42 is required for polarized growth in human pathogen Candida albicans. Eukaryot Cell 1, 95–104.[CrossRef]
    [Google Scholar]
  84. Vilella, F., Herrero, E., Torres, J. & De La Torre-Ruiz, M. A. ( 2005; ). Pkc1 and the upstream elements of the cell integrity pathway in Saccharomyces cerevisiae, Rom2 and Mtl1, are required for cellular responses to oxidative stress. J Biol Chem 280, 9149–9159.[CrossRef]
    [Google Scholar]
  85. Whiteway, M. ( 2000; ). Transcriptional control of cell type and morphogenesis in Candida albicans. Curr Opin Microbiol 3, 582–588.[CrossRef]
    [Google Scholar]
  86. Whiteway, M., Dignard, D. & Thomas, D. Y. ( 1992; ). Dominant negative selection of heterologous genes: isolation of Candida albicans genes that interfere with Saccharomyces cerevisiae mating factor-induced cell cycle arrest. Proc Natl Acad Sci U S A 89, 9410–9414.[CrossRef]
    [Google Scholar]
  87. Yamada-Okabe, T., Mio, T., Ono, N., Kashima, Y., Matsui, M., Arisawa, M. & Yamada-Okabe, H. ( 1999; ). Roles of three histidine kinase genes in hyphal development and virulence of the pathogenic fungus Candida albicans. J Bacteriol 181, 7243–7247.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28616-0
Loading
/content/journal/micro/10.1099/mic.0.28616-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error