1887

Abstract

The NADP(H)-dependent enzymes glucose-6-phosphate dehydrogenase (G6PDH) and ferredoxin(flavodoxin)-NADP(H) reductase (FPR), encoded by the and genes, respectively, are committed members of the regulatory system involved in superoxide resistance in . Exposure of cells to the superoxide propagator methyl viologen (MV) led to rapid accumulation of G6PDH, while FPR was induced after a lag period of several minutes. Bacteria expressing G6PDH from a multicopy plasmid accumulated higher NADPH levels and displayed a protracted response, whereas FPR build-up had the opposite effects. Inactivation of either of the two genes resulted in enhanced sensitivity to MV killing, while further increases in the cellular content of FPR led to higher survival rates under oxidative conditions. In contrast, G6PDH accumulation over wild-type levels of expression failed to increase MV tolerance. G6PDH and FPR could act concertedly to deliver reducing equivalents from carbohydrates, via NADP, to the FPR acceptors ferredoxin and/or flavodoxin. To evaluate whether this electron-transport system could mediate reductive repair reactions, the pathway was reconstituted from purified components; the reconstituted system was found to be functional in reactivation of oxidatively damaged iron–sulfur clusters of hydro-lyases such as aconitase and 6-phosphogluconate dehydratase. Recovery of these activities after oxidative challenge was faster and more extensive in transformed bacteria overexpressing FPR than in wild-type cells, indicating that the reductase could sustain hydro-lyase repair . However, FPR-deficient mutants were still able to fix iron–sulfur clusters at significant rates, suggesting that back-up routes for ferredoxin and/or flavodoxin reduction might be called into action to rescue inactivated enzymes when FPR is absent.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28612-0
2006-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/4/1119.html?itemId=/content/journal/micro/10.1099/mic.0.28612-0&mimeType=html&fmt=ahah

References

  1. Alekshun M. N, Levy S. B. 1997; Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. Antimicrob Agents Chemother 41:2067–2075
    [Google Scholar]
  2. Bianchi V, Haggard-Ljungquist E, Pontis E, Reichard P. 1995; Interruption of the ferredoxin(flavodoxin) NADP[sup]+[/sup] oxidoreductase gene of Escherichia coli does not affect anaerobic growth but increases sensitivity to paraquat. J Bacteriol 177:4528–4531
    [Google Scholar]
  3. Blaschkowski H. P, Neuer G, Ludwig-Festl M, Knappe J. 1982; Routes of flavodoxin and ferredoxin reduction in Escherichia coli . CoA-acylating pyruvate : flavodoxin and NADPH : flavodoxin oxidoreductases participating in the activation of pyruvate formate-lyase. Eur J Biochem 123:563–569
    [Google Scholar]
  4. Brumaghim J. L, Li Y, Henle E, Linn S. 2003; Effects of hydrogen peroxide upon nicotinamide nucleotide metabolism in Escherichia coli . Changes in enzyme levels and nicotinamide nucleotide pools and studies on the oxidation of NAD(P)H by Fe(III). J Biol Chem 278:42495–42504 [CrossRef]
    [Google Scholar]
  5. Carrillo N, Ceccarelli E. A. 2003; Open questions in ferredoxin-NADP[sup]+[/sup] reductase catalytic mechanism. Eur J Biochem 270:1900–1915 [CrossRef]
    [Google Scholar]
  6. Ceccarelli E. A, Arakaki A. K, Cortez N, Carrillo N. 2004; Functional plasticity and catalytic efficiency in plant and bacterial ferredoxin-NADP(H) reductases. Biochim Biophys Acta 1698155–165 [CrossRef]
    [Google Scholar]
  7. Chander M, Raducha-Grace L, Demple B. 2003; Transcription-defective soxRS mutants of Escherichia coli : isolation and in vivo characterization. J Bacteriol 185:2441–2454 [CrossRef]
    [Google Scholar]
  8. Csonka L, Fraenkel D. G. 1977; Pathways of NADPH formation in Escherichia coli . J Biol Chem 152:3382–3391
    [Google Scholar]
  9. Ding H, Demple B. 1997; In vivo kinetics of a redox-regulated transcriptional switch. Proc Natl Acad Sci U S A 94:8445–8449 [CrossRef]
    [Google Scholar]
  10. Djaman O, Outten F, Imlay J. A. 2004; Repair of oxidized iron–sulfur clusters in Escherichia coli . J Biol Chem 279:44590–44599 [CrossRef]
    [Google Scholar]
  11. Flint D. H, Tuminello J. F, Emptage M. H. 1993; The inactivation of Fe–S cluster containing hydro-lyases by superoxide. J Biol Chem 268:22369–22376
    [Google Scholar]
  12. Fraenkel D. G. 1968; Selection of Escherichia coli mutants lacking glucose 6-phosphate dehydrogenase or gluconate 6-phosphate dehydrogenase. J Bacteriol 95:1267–1271
    [Google Scholar]
  13. Fraenkel D. G. others 1987; Glycolysis, pentose phosphate pathway, and Entner-Doudoroff pathway. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp  142–150 Edited by Neidhart F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Fraenkel D. G, Banerjee S. 1971; A mutation increasing the amount of a constitutive enzyme in Escherichia coli , glucose 6-phosphate dehydrogenase. J Mol Biol 56:183–194 [CrossRef]
    [Google Scholar]
  15. Fraenkel D. G, Parola A. 1972; “Up-promoter” mutations of glucose 6-phosphate dehydrogenase in Escherichia coli . J Mol Biol 71:107–111 [CrossRef]
    [Google Scholar]
  16. Gardner P. R, Fridovich L. 1991a; Superoxide sensitivity of the Escherichia coli 6-phosphogluconate dehydratase. J Biol Chem 266:1478–1483
    [Google Scholar]
  17. Gardner P. R, Fridovich L. 1991b; Superoxide sensitivity of the Escherichia coli aconitase. J Biol Chem 266:19328–19333
    [Google Scholar]
  18. Gardner P. R, Fridovich L. 1993; NADPH inhibits transcription of the Escherichia coli manganese superoxide dismutase gene (sodA) in vitro . J Biol Chem 268:12958–12963
    [Google Scholar]
  19. Gaudu P, Moon N, Weiss B. 1997; Regulation of the soxRS oxidative stress regulon. J Biol Chem 272:5082–5086 [CrossRef]
    [Google Scholar]
  20. Gaudu P, Dubrac S, Touati D. 2000; Activation of SoxR by overproduction of desulfoferrodoxin: multiple ways to induce the soxRS regulon. J Bacteriol 182:1761–1763 [CrossRef]
    [Google Scholar]
  21. Gort A. S, Imlay J. A. 1998; Balance between endogenous superoxide stress and antioxidant defenses. J Bacteriol 180:1402–1410
    [Google Scholar]
  22. Greenberg J, Monach P, Chou J, Josepphy D, Demple B. 1990; Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli . Proc Natl Acad Sci U S A 87:6181–6185 [CrossRef]
    [Google Scholar]
  23. Griffith K. L, Wolf R. E. 2001; Systematic mutagenesis of the DNA binding sites for SoxS in the Escherichia coli zwf and fpr promoters: identifying nucleotides required for DNA binding and transcription activation. Mol Microbiol 40:1141–1154 [CrossRef]
    [Google Scholar]
  24. Griffith K. L, Shah I. M, Wolf R. E. 2004; Proteolytic degradation of Escherichia coli transcription activators SoxS and MarA as the mechanism for reversing the induction of the superoxide (soxRS) and multiple antibiotic resistance (mar) regulons. Mol Microbiol 51:1801–1816 [CrossRef]
    [Google Scholar]
  25. Imlay J. A. 2003; Pathways of oxidative damage. Annu Rev Microbiol 57:395–418 [CrossRef]
    [Google Scholar]
  26. Kao S. M, Hassan H. M. 1985; Biochemical characterization of a paraquat-tolerant mutant of Escherichia coli . J Biol Chem 260:10478–10481
    [Google Scholar]
  27. Kennedy M. C, Emptage M. H, Dreyer J. L, Beinert H. 1983; The role of iron in the activation-inactivation of aconitase. J Biol Chem 258:11098–11105
    [Google Scholar]
  28. Koo M. S, Lee J. H, Rah S. Y, Yeo W. S, Lee J. W, Lee K. L, Koh Y. S, Kang S. O, Roe J. H. 2003; A reducing system of the superoxide sensor SoxR in Escherichia coli . EMBO J 22:2614–2622 [CrossRef]
    [Google Scholar]
  29. Krapp A. R, Tognetti V. B, Carrillo N, Acevedo A. 1997; The role of ferredoxin-NADP[sup]+[/sup] reductase in the concerted cell defense against oxidative damage. Studies using Escherichia coli mutants and cloned plant genes. Eur J Biochem 249:556–563 [CrossRef]
    [Google Scholar]
  30. Krapp A. R, Rodriguez R. E, Poli H. O, Paladini D. H, Palatnik J. F, Carrillo N. 2002; The flavoenzyme ferredoxin(flavodoxin)-NADP(H) reductase modulates NADP(H) homeostasis during the soxRS response of Escherichia coli . J Bacteriol 184:1474–1480 [CrossRef]
    [Google Scholar]
  31. Liochev S. I, Fridovich L. 1992; Fumarase C, the stable fumarase of Escherichia coli , is controlled by the soxRS regulon. Proc Natl Acad Sci U S A 89:5892–5896 [CrossRef]
    [Google Scholar]
  32. Liochev S. I, Hausladen A, Beyer W. F., Jr, Fridovich L. 1994; NADPH-ferredoxin oxidoreductase acts as a paraquat diaphorase and is a member of the soxRS regulon. Proc Natl Acad Sci U S A 91:1328–1331 [CrossRef]
    [Google Scholar]
  33. Lundberg B, Wolf R. E, Dinauer M, Xu Y, Fang F. 1999; Glucose 6-phosphate dehydrogenase is required for Salmonella typhimurium virulence and resistance to reactive oxygen and nitrogen intermediates. Infect Immun 65:5371–5375
    [Google Scholar]
  34. Martin R. G, Gillette W. K, Rosner J. L. 2000; Promoter discrimination by the related transcriptional activators MarA and SoxS: differential regulation by differential binding. Mol Microbiol 35:623–634
    [Google Scholar]
  35. Martinez E, Bartolomé B, de la Cruz F. 1988; pACYC184-derived cloning vectors containing the multiple cloning site and lacZα reporter gene of pUC8/9 and pUC18/19 plasmids. Gene 68:159–162 [CrossRef]
    [Google Scholar]
  36. Miller J. H. 1992 A Short Course in Bacterial Genetics: a Laboratory Manual for E. coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Nogae I, Johnston M. 1990; Isolation and characterization of the ZWF1 gene encoding glucose 6-phosphate dehydrogenase of Saccharomyces cerevisiae . Gene 96:161–169 [CrossRef]
    [Google Scholar]
  38. Nunoshiba T, Hidalgo E, Amabile Cuevas C. F, Demple B. 1992; Two-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene. J Bacteriol 174:6054–6060
    [Google Scholar]
  39. Nunoshiba T, Tannenbaum S. R, Demple B, de Rojas-Walker T. 1995; Roles of nitric oxide in inducible resistance of Escherichia coli to activated murine macrophages. Infect Immun 63:794–798
    [Google Scholar]
  40. Pomposiello P. J, Demple B. 2001; Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends Biotechnol 19:109–114 [CrossRef]
    [Google Scholar]
  41. Pomposiello P. J, Bennik M. H, Demple B. 2001; Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. J Bacteriol 183:3890–3902 [CrossRef]
    [Google Scholar]
  42. Rowley D. L, Pease A, Wolf R. E. 1991; Genetic and physical analyses of the growth rate-dependent regulation of Escherichia coli zwf expression. J Bacteriol 173:4660–4667
    [Google Scholar]
  43. Rowley D. L, Fawcet W. P, Wolf R. E. 1992; Molecular characterization of mutations affecting expression level and growth rate-dependent regulation of the Escherichia coli zwf gene. J Bacteriol 174:623–626
    [Google Scholar]
  44. Sambrook J, Fritsch E, Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  45. Schwarz C. J, Djaman O, Imlay J. A, Kiley P. J. 2000; The cysteine desulfurase, IscS, has a major role in in vivo Fe–S cluster formation in Escherichia coli . Proc Natl Acad Sci U S A 97:9009–9014 [CrossRef]
    [Google Scholar]
  46. Scott M, Zuo L, Lubin B, Chiu D. 1991; NADPH, not glutathione, status modulates oxidant sensitivity in normal and glucose 6-phosphate dehydrogenase-deficient erythrocytes. Blood 77:2059–2064
    [Google Scholar]
  47. Sedmak J. J, Grossberg S. E. 1977; A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem 79:544–552 [CrossRef]
    [Google Scholar]
  48. Tsaneva I. R, Weiss B. 1990; soxR , a locus governing a superoxide response regulon in Escherichia coli K-12. J Bacteriol 172:4197–4205
    [Google Scholar]
  49. Varghese S, Tang Y, Imlay J. A. 2003; Contrasting sensitivities of Escherichia coli aconitases A and B to oxidation and iron depletion. J Bacteriol 185:221–230 [CrossRef]
    [Google Scholar]
  50. Wan J. T, Jarrett J. T. 2002; Electron acceptor specifity of ferredoxin (flavodoxin) : NADP[sup]+[/sup] oxidoreductase from Escherichia coli . Arch Biochem Biophys 406:116–126 [CrossRef]
    [Google Scholar]
  51. Wolf R. E, Prather D. M, Shea F. M. 1979; Growth rate-dependent alteration of 6-phosphogluconate dehydrogenase and glucose 6-phosphate dehydrogenase levels in Escherichia coli K-12. J Bacteriol 139:1093–1096
    [Google Scholar]
  52. Wood T. I, Griffith K. L, Fawcett W. P, Jair K. W, Schneider T. D, Wolf R. E. 1999; Interdependence of the position and orientation of SoxS binding sites in the transcriptional activation of the class I subset of Escherichia coli superoxide-inducible promoters. Mol Microbiol 34:414–430 [CrossRef]
    [Google Scholar]
  53. Woodmansee A. N, Imlay J. A. 2002; Reduced flavins promote oxidative DNA damage in non-respiring Escherichia coli by delivering electrons to intracellular free iron. J Biol Chem 277:34055–34066 [CrossRef]
    [Google Scholar]
  54. Wu J, Weiss B. 1992; Two-stage induction of the soxRS (superoxide response) regulon of Escherichia coli . J Bacteriol 174:3915–3920
    [Google Scholar]
  55. Yang W, Rogers P, Ding H. 2002; Repair of nitric oxide-modified ferredoxin [2Fe–2S] cluster by cysteine desulfurase (IscS). J Biol Chem 277:12868–12873 [CrossRef]
    [Google Scholar]
  56. Zheng M, Doan B, Schneider T. D, Storz G. 1999; OxyR and SoxRS regulation of fur . J Bacteriol 181:4639–4643
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28612-0
Loading
/content/journal/micro/10.1099/mic.0.28612-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error