Versatility of pneumococcal surface proteins Free

Abstract

Surface-exposed proteins are key players during the infectious process of pathogenic bacteria. The cell surface of the Gram-positive human pathogen is decorated not only by typical Gram-positive surface proteins, but also by a family of proteins that recognizes the phosphorylcholine of the lipoteichoic and teichoic acids, namely the choline-binding proteins, and by non-classical surface proteins that lack a leader peptide and membrane-anchor motif. A comprehensive understanding of how microbial proteins subvert host immunity or host protein functions is a prerequisite for the development of novel therapeutic strategies to combat pneumococcal infections. This article reviews recent progress in the investigation of the versatility and sophistication of the virulence functions of surface-exposed pneumococcal proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28610-0
2006-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/2/295.html?itemId=/content/journal/micro/10.1099/mic.0.28610-0&mimeType=html&fmt=ahah

References

  1. Adrian P. V, Bogaert D, Oprins M, Rapola S, Lahdenkari M, Kilpi T, Kayhty H, Hermans P. W, de Groot R. 2004; Development of antibodies against pneumococcal proteins alpha-enolase, immunoglobulin A1 protease, streptococcal lipoprotein rotamase A, and putative proteinase maturation protein A in relation to pneumococcal carriage and otitis media. Vaccine 22:2737–2742 [CrossRef]
    [Google Scholar]
  2. Bensing B. A, Sullam P. M. 2002; An accessory sec locus of Streptococcus gordonii is required for export of the surface protein GspB and for normal levels of binding to human platelets. Mol Microbiol 44:1081–1094 [CrossRef]
    [Google Scholar]
  3. Bergmann S, Wild D, Diekmann O, Frank R, Bracht D, Chhatwal G. S, Hammerschmidt S. 2003; Identification of a novel plasmin(ogen)-binding motif in surface displayed alpha-enolase of Streptococcus pneumoniae . Mol Microbiol 49:411–423 [CrossRef]
    [Google Scholar]
  4. Bergmann S, Rohde M, Hammerschmidt S. 2004; Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pneumoniae is a surface-displayed plasminogen-binding protein. Infect Immun 72:2416–2419 [CrossRef]
    [Google Scholar]
  5. Bergmann S, Rohde M, Preissner K. T, Hammerschmidt S. 2005; The nine residue plasminogen-binding motif of the pneumococcal enolase is the major cofactor of plasmin-mediated degradation of extracellular matrix, dissolution of fibrin and transmigration. Thromb Haemostasis 94:304–311
    [Google Scholar]
  6. Berry A. M, Paton J. C. 2000; Additive attenuation of virulence of Streptococcus pneumoniae by mutation of the genes encoding pneumolysin and other putative pneumococcal virulence proteins. Infect Immun 68:133–140 [CrossRef]
    [Google Scholar]
  7. Bethe G, Nau R, Wellmer A, Hakenbeck R, Reinert R. R, Heinz H. P, Zysk G. 2001; The cell wall-associated serine protease PrtA: a highly conserved virulence factor of Streptococcus pneumoniae . FEMS Microbiol Lett 205:99–104 [CrossRef]
    [Google Scholar]
  8. Blue C. E, Paterson G. K, Kerr A. R, Berge M, Claverys J. P, Mitchell T. J. 2003; ZmpB, a novel virulence factor of Streptococcus pneumoniae that induces tumor necrosis factor alpha production in the respiratory tract. Infect Immun 71:4925–4935 [CrossRef]
    [Google Scholar]
  9. Brown J. S, Gilliland S. M, Holden D. W. 2001; A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Mol Microbiol 40:572–585 [CrossRef]
    [Google Scholar]
  10. Cartwright K. 2002; Pneumococcal disease in western Europe: burden of disease, antibiotic resistance and management. Eur J Pediatr 161:188–195 [CrossRef]
    [Google Scholar]
  11. Chapuy-Regaud S, Ogunniyi A. D, Diallo N, Huet Y, Desnottes J. F, Paton J. C, Escaich S, Trombe M. C. 2003; RegR, a global LacI/GalR family regulator, modulates virulence and competence in Streptococcus pneumoniae . Infect Immun 71:2615–2625 [CrossRef]
    [Google Scholar]
  12. Chiavolini D, Memmi G, Maggi T, Iannelli F, Pozzi G, Oggioni M. R. 2003; The three extra-cellular zinc metalloproteinases of Streptococcus pneumoniae have a different impact on virulence in mice. BMC Microbiol 3:14 [CrossRef]
    [Google Scholar]
  13. Cundell D. R, Gerard N. P, Gerard C, Idanpaan-Heikkila I, Tuomanen E. I. 1995; Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377:435–438 [CrossRef]
    [Google Scholar]
  14. Dave S, Carmicle S, Hammerschmidt S, Pangburn M. K, McDaniel L. S. 2004; Dual roles of PspC, a surface protein of Streptococcus pneumoniae , in binding human secretory IgA and factor H. J Immunol 173:471–477 [CrossRef]
    [Google Scholar]
  15. De Las Rivas B, Garcia J. L, Lopez R, Garcia P. 2001; Molecular characterization of the pneumococcal teichoic acid phosphorylcholine esterase. Microb Drug Resist 7:213–222 [CrossRef]
    [Google Scholar]
  16. Dintilhac A, Alloing G, Granadel C, Claverys J. P. 1997; Competence and virulence of Streptococcus pneumoniae : Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol Microbiol 25:727–739 [CrossRef]
    [Google Scholar]
  17. Duthy T. G, Ormsby R. J, Giannakis E, Ogunniyi A. D, Stroeher U. H, Paton J. C, Gordon D. L. 2002; The human complement regulator factor H binds pneumococcal surface protein PspC via short consensus repeats 13 to 15. Infect Immun 70:5604–5611 [CrossRef]
    [Google Scholar]
  18. Ehinger S, Schubert W. D, Bergmann S, Hammerschmidt S, Heinz D. W. 2004; Plasmin(ogen)-binding alpha-enolase from Streptococcus pneumoniae : crystal structure and evaluation of plasmin(ogen)-binding sites. J Mol Biol 343:997–1005 [CrossRef]
    [Google Scholar]
  19. Elm C, Braathen R, Bergmann S, Frank R, Vaerman J. P, Kaetzel C. S, Chhatwal G. S, Johansen F. E, Hammerschmidt S. 2004; Ectodomains 3 and 4 of human polymeric immunoglobulin receptor (hpIgR) mediate invasion of Streptococcus pneumoniae into the epithelium. J Biol Chem 279:6296–6304
    [Google Scholar]
  20. Garau G, Lemaire D, Vernet T, Dideberg O, Di Guilmi A. M. 2005; Crystal structure of phosphorylcholine esterase domain of the virulence factor choline binding protein E from Streptococcus pneumoniae : new structural features among the metallo- β -lactamase superfamily. J Biol Chem 280:28591–28600 [CrossRef]
    [Google Scholar]
  21. Gosink K. K, Mann E. R, Guglielmo C, Tuomanen E. I, Masure H. R. 2000; Role of novel choline binding proteins in virulence of Streptococcus pneumoniae . Infect Immun 68:5690–5695 [CrossRef]
    [Google Scholar]
  22. Guiral S, Mitchell T. J, Martin B, Claverys J. P. 2005; Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae : genetic requirements. Proc Natl Acad Sci U S A 102:8710–8715 [CrossRef]
    [Google Scholar]
  23. Hammerschmidt S, Bethe G, Remane P. H, Chhatwal G. S. 1999; Identification of pneumococcal surface protein A as a lactoferrin-binding protein of Streptococcus pneumoniae . Infect Immun 67:1683–1687
    [Google Scholar]
  24. Hammerschmidt S, Tillig M. P, Wolff S, Vaerman J. P, Chhatwal G. S. 2000; Species-specific binding of human secretory component to SpsA protein of Streptococcus pneumoniae via a hexapeptide motif. Mol Microbiol 36:726–736
    [Google Scholar]
  25. Hammerschmidt S, Wolff S, Hocke A, Rosseau S, Muller E, Rohde M. 2005; Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells. Infect Immun 73:4653–4667 [CrossRef]
    [Google Scholar]
  26. Hava D. L, Camilli A. 2002; Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol Microbiol 45:1389–1406
    [Google Scholar]
  27. Hermans P. W, Adrian P. V, Albert C, Estevao S, Hoogenboezem T, Luijendijk I. H, Kamphausen T, Hammerschmidt S. 2005; The streptococcal lipoprotein rotamase A (SlrA) is a functional peptidyl-prolyl isomerase involved in pneumococcal colonisation. J Biol Chem (in press) http://dx.doi.org/10·1074/jbc.M510014200
    [Google Scholar]
  28. Hermoso J. A, Lagartera L, Gonzalez A, Stelter M, Garcia P, Martinez-Ripoll M, Garcia J. L, Menendez M. 2005; Insights into pneumococcal pathogenesis from the crystal structure of the modular teichoic acid phosphorylcholine esterase Pce. Nat Struct Mol Biol 12:533–538 [CrossRef]
    [Google Scholar]
  29. Holmes A. R, McNab R, Millsap K. W, Rohde M, Hammerschmidt S, Mawdsley J. L, Jenkinson H. F. 2001; The pavA gene of Streptococcus pneumoniae encodes a fibronectin-binding protein that is essential for virulence. Mol Microbiol 41:1395–1408 [CrossRef]
    [Google Scholar]
  30. Hoskins J, Alborn W. E., Jr, Arnold J. 39 other authors 2001; Genome of the bacterium Streptococcus pneumoniae strain R6. J Bacteriol 183:5709–5717 [CrossRef]
    [Google Scholar]
  31. Iannelli F, Chiavolini D, Ricci S, Oggioni M. R, Pozzi G. 2004; Pneumococcal surface protein C contributes to sepsis caused by Streptococcus pneumoniae in mice. Infect Immun 72:3077–3080 [CrossRef]
    [Google Scholar]
  32. Ibrahim Y. M, Kerr A. R, McCluskey J, Mitchell T. J. 2004; Role of HtrA in the virulence and competence of Streptococcus pneumoniae . Infect Immun 72:3584–3591 [CrossRef]
    [Google Scholar]
  33. Janulczyk R, Iannelli F, Sjoholm A. G, Pozzi G, Bjorck L. 2000; Hic, a novel surface protein of Streptococcus pneumoniae that interferes with complement function. J Biol Chem 275:37257–37263 [CrossRef]
    [Google Scholar]
  34. Jarva H, Hellwage J, Jokiranta T. S, Lehtinen M. J, Zipfel P. F, Meri S. 2004; The group B streptococcal beta and pneumococcal Hic proteins are structurally related immune evasion molecules that bind the complement inhibitor factor H in an analogous fashion. J Immunol 172:3111–3118 [CrossRef]
    [Google Scholar]
  35. Johnson S. E, Dykes J. K, Jue D. L, Sampson J. S, Carlone G. M, Ades E. W. 2002; Inhibition of pneumococcal carriage in mice by subcutaneous immunization with peptides from the common surface protein pneumococcal surface adhesin A. J Infect Dis 185:489–496 [CrossRef]
    [Google Scholar]
  36. Jomaa M, Yuste J, Paton J. C, Jones C, Dougan G, Brown J. S. 2005; Antibodies to the iron uptake ABC transporter lipoproteins PiaA and PiuA promote opsonophagocytosis of Streptococcus pneumoniae . Infect Immun 73:6852–6859 [CrossRef]
    [Google Scholar]
  37. Kausmally L, Johnsborg O, Lunde M, Knutsen E, Havarstein L. S. 2005; Choline-binding protein D (CbpD) in Streptococcus pneumoniae is essential for competence-induced cell lysis. J Bacteriol 187:4338–4345 [CrossRef]
    [Google Scholar]
  38. Kharat A. S, Tomasz A. 2003; Inactivation of the srtA gene affects localization of surface proteins and decreases adhesion of Streptococcus pneumoniae to human pharyngeal cells in vitro. Infect Immun 71:2758–2765 [CrossRef]
    [Google Scholar]
  39. King S. J, Hippe K. R, Gould J. M, Bae D, Peterson S, Cline R. T, Fasching C, Janoff E. N, Weiser J. N. 2004; Phase variable desialylation of host proteins that bind to Streptococcus pneumoniae in vivo and protect the airway. Mol Microbiol 54:159–171 [CrossRef]
    [Google Scholar]
  40. King S. J, Whatmore A. M, Dowson C. G. 2005; NanA, a neuraminidase from Streptococcus pneumoniae , shows high levels of sequence diversity, at least in part through recombination with Streptococcus oralis . J Bacteriol 187:5376–5386 [CrossRef]
    [Google Scholar]
  41. Lau G. W, Haataja S, Lonetto M, Kensit S. E, Marra A, Bryant A. P, McDevitt D, Morrison D. A, Holden D. W. 2001; A functional genomic analysis of type 3 Streptococcus pneumoniae virulence. Mol Microbiol 40:555–571 [CrossRef]
    [Google Scholar]
  42. Long J. P, Tong H. H, DeMaria T. F. 2004; Immunization with native or recombinant Streptococcus pneumoniae neuraminidase affords protection in the chinchilla otitis media model. Infect Immun 72:4309–4313 [CrossRef]
    [Google Scholar]
  43. López R, García E. 2004; Recent trends on the molecular biology of pneumococcal capsules, lytic enzymes, and bacteriophage. FEMS Microbiol Rev 28:553–580 [CrossRef]
    [Google Scholar]
  44. Lu L, Lamm M. E, Li H, Corthesy B, Zhang J. R. 2003; The human polymeric immunoglobulin receptor binds to Streptococcus pneumoniae via domains 3 and 4. J Biol Chem 278:48178–48187 [CrossRef]
    [Google Scholar]
  45. Luo R, Mann B, Lewis W. S. 9 other authors 2005; Solution structure of choline binding protein A, the major adhesin of Streptococcus pneumoniae . EMBO J 24:34–43 [CrossRef]
    [Google Scholar]
  46. Marra A, Lawson S, Asundi J. S, Brigham D, Hromockyj A. E. 2002; In vivo characterization of the psa genes from Streptococcus pneumoniae in multiple models of infection. Microbiology 148:1483–1491
    [Google Scholar]
  47. Mascher T, Zahner D, Merai M, Balmelle N, Hakenbeck R, de Saizieu A. B. 2003; The Streptococcus pneumoniae cia regulon: CiaR target sites and transcription profile analysis. J Bacteriol 185:60–70 [CrossRef]
    [Google Scholar]
  48. Ng W. L, Tsui H. C, Winkler M. E. 2005; Regulation of the pspA virulence factor and essential pcsB murein biosynthetic genes by the phosphorylated VicR (YycF) response regulator in Streptococcus pneumoniae . J Bacteriol 187:7444–7459 [CrossRef]
    [Google Scholar]
  49. Oggioni M. R, Memmi G, Maggi T, Chiavolini D, Iannelli F, Pozzi G. 2003; Pneumococcal zinc metalloproteinase ZmpC cleaves human matrix metalloproteinase 9 and is a virulence factor in experimental pneumonia. Mol Microbiol 49:795–805
    [Google Scholar]
  50. Ogunniyi A. D, Giammarinaro P, Paton J. C. 2002; The genes encoding virulence-associated proteins and the capsule of Streptococcus pneumoniae are upregulated and differentially expressed in vivo . Microbiology 148:2045–2053
    [Google Scholar]
  51. Orihuela C. J, Radin J. N, Sublett J. E, Gao G, Kaushal D, Tuomanen E. I. 2004; Microarray analysis of pneumococcal gene expression during invasive disease. Infect Immun 72:5582–5596 [CrossRef]
    [Google Scholar]
  52. Overweg K, Kerr A, Sluijter M, Jackson M. H, Mitchell T. J, Hermans P. W, de Jong A. P, de Groot R. 2000; The putative proteinase maturation protein A of Streptococcus pneumoniae is a conserved surface protein with potential to elicit protective immune responses. Infect Immun 68:4180–4188 [CrossRef]
    [Google Scholar]
  53. Paterson G. K, Mitchell T. J. 2005; The role of Streptococcus pneumoniae sortase A in colonisation and pathogenesis. Microbes Infect (in press)
    [Google Scholar]
  54. Paterson G. K, Mitchell T. J. 2006; Innate immunity and the pneumococcus. Microbiology 152:285–293 [CrossRef]
    [Google Scholar]
  55. Polissi A, Pontiggia A, Feger G, Altieri M, Mottl H, Ferrari L, Simon D. 1998; Large-scale identification of virulence genes from Streptococcus pneumoniae . Infect Immun 66:5620–5629
    [Google Scholar]
  56. Pracht D, Elm C, Gerber J. 7 other authors 2005; PavA of Streptococcus pneumoniae modulates adherence, invasion, and meningeal inflammation. Infect Immun 73:2680–2689 [CrossRef]
    [Google Scholar]
  57. Quin L. R, Carmicle S, Dave S, Pangburn M. K, Evenhuis J. P, McDaniel L. S. 2005; In vivo binding of complement regulator factor H by Streptococcus pneumoniae . J Infect Dis 192:1996–2003 [CrossRef]
    [Google Scholar]
  58. Ren B, McCrory M. A, Pass C, Bullard D. C, Ballantyne C. M, Xu Y, Briles D. E, Szalai A. J. 2004; The virulence function of Streptococcus pneumoniae surface protein A involves inhibition of complement activation and impairment of complement receptor-mediated protection. J Immunol 173:7506–7512 [CrossRef]
    [Google Scholar]
  59. Rigden D. J, Jedrzejas M. J. 2003; Structures of Streptococcus pneumoniae hyaluronate lyase in complex with chondroitin and chondroitin sulfate disaccharides. Insights into specificity and mechanism of action. J Biol Chem 278:50596–50606 [CrossRef]
    [Google Scholar]
  60. Romero-Steiner S, Pilishvili T, Sampson J. S, Johnson S. E, Stinson A, Carlone G. M, Ades E. W. 2003; Inhibition of pneumococcal adherence to human nasopharyngeal epithelial cells by anti-PsaA antibodies. Clin Diagn Lab Immunol 10:246–251
    [Google Scholar]
  61. Rosenow C, Ryan P, Weiser J. N, Johnson S, Fontan P, Ortqvist A, Masure H. R. 1997; Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae . Mol Microbiol 25:819–829 [CrossRef]
    [Google Scholar]
  62. Sebert M. E, Palmer L. M, Rosenberg M, Weiser J. N. 2002; Microarray-based identification of htrA , a Streptococcus pneumoniae gene that is regulated by the CiaRH two-component system and contributes to nasopharyngeal colonization. Infect Immun 70:4059–4067 [CrossRef]
    [Google Scholar]
  63. Shakhnovich E. A, King S. J, Weiser J. N. 2002; Neuraminidase expressed by Streptococcus pneumoniae desialylates the lipopolysaccharide of Neisseria meningitidis and Haemophilus influenzae : a paradigm for interbacterial competition among pathogens of the human respiratory tract. Infect Immun 70:7161–7164 [CrossRef]
    [Google Scholar]
  64. Shaper M, Hollingshead S. K, Benjamin W. H., Jr, Briles D. E. 2004; PspA protects Streptococcus pneumoniae from killing by apolactoferrin, and antibody to PspA enhances killing of pneumococci by apolactoferrin. Infect Immun 72:5031–5040 [CrossRef]
    [Google Scholar]
  65. Takamatsu D, Bensing B. A, Sullam P. M. 2004; Genes in the accessory sec locus of Streptococcus gordonii have three functionally distinct effects on the expression of the platelet-binding protein GspB. Mol Microbiol 52:189–203 [CrossRef]
    [Google Scholar]
  66. Tettelin H, Hollingshead S. K. 2004; Comparative genomics of Streptococcus pneumoniae : intrastrain diversity and genome plasticity. In The Pneumococcus pp  15–29 Edited by Tuomanen E. I., Mitchell T. J., Morrison D. A., Spratt B. G. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  67. Tettelin H, Nelson K. E, Paulsen I. T. 36 other authors 2001; Complete genome sequence of a virulent isolate of Streptococcus pneumoniae . Science 293:498–506 [CrossRef]
    [Google Scholar]
  68. Throup J. P, Koretke K. K, Bryant A. P. 9 other authors 2000; A genomic analysis of two-component signal transduction in Streptococcus pneumoniae . Mol Microbiol 35:566–576
    [Google Scholar]
  69. Tong H. H, Liu X, Chen Y, James M, Demaria T. 2002; Effect of neuraminidase on receptor-mediated adherence of Streptococcus pneumoniae to chinchilla tracheal epithelium. Acta Otolaryngol 122413–419
    [Google Scholar]
  70. Tseng H. J, McEwan A. G, Paton J. C, Jennings M. P. 2002; Virulence of Streptococcus pneumoniae : PsaA mutants are hypersensitive to oxidative stress. Infect Immun 70:1635–1639 [CrossRef]
    [Google Scholar]
  71. Vollmer W, Tomasz A. 2001; Identification of the teichoic acid phosphorylcholine esterase in Streptococcus pneumoniae . Mol Microbiol 39:1610–1622 [CrossRef]
    [Google Scholar]
  72. Weiser J. N, Bae D, Fasching C, Scamurra R. W, Ratner A. J, Janoff E. N. 2003; Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proc Natl Acad Sci U S A 100:4215–4220 [CrossRef]
    [Google Scholar]
  73. Zhang J. R, Mostov K. E, Lamm M. E, Nanno M, Shimida S, Ohwaki M, Tuomanen E. 2000; The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102:827–837 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28610-0
Loading
/content/journal/micro/10.1099/mic.0.28610-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed