Functional characterization of the FimH adhesin from serovar Enteritidis Free

Abstract

serovar Enteritidis has emerged during the last 20 years as the major causative agent of food-borne gastroenteritis in humans and as the major infectious agent on poultry farms, replacing serovar Typhimurium as the dominant pathogenic serovar. Because adhesion to gut tissues and colonization of the alimentary tract, mediated in large part by the FimH adhesins located on type 1 fimbriae, is an important stage in the pathogenesis of both serovars, the binding properties of the FimH adhesins from these two enteropathogens were compared. Enteritidis FimH protein and the Typhimurium low-adhesive variant of this adhesin were expressed in and the recombinant proteins were analysed for their ability to bind glycoproteins carrying different oligomannosidic structures and different types of eukaryotic cells. In static binding assays (ELISA and Western blotting) both FimH proteins bound equally well to all three tested glycoproteins (RNase B, horseradish peroxidase and mannan-BSA). In addition, no differences were found in the binding specificity of the FimH proteins and intact cells of Enteritidis and Typhimurium to human colon carcinoma or bladder cancer cells. The presence of the same amino acid residues at positions 61 (glycine) and 118 (phenylalanine) and the similar binding properties of these two adhesins suggest that the newly described FimH protein of Enteritidis represents the low-adhesive variant found in Typhimurium. To study the binding specificity of Enteritidis FimH protein further, direct kinetic analysis using surface plasmon resonance was performed. With this method it was found that Enteritidis FimH adhesin bound with the highest value to high-mannose type -glycans carried by RNase B; about 100 times lower values were obtained in the interactions with mannan-BSA and horseradish peroxidase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28588-0
2006-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/5/1337.html?itemId=/content/journal/micro/10.1099/mic.0.28588-0&mimeType=html&fmt=ahah

References

  1. Abraham S. N. 1994; Bacterial adhesins. In Adhesion Molecules pp 253–276 Edited by Wegner C. D. London: Academic Press;
    [Google Scholar]
  2. Abraham S. N., Sun D., Dale J. B., Beachey E. H. 1988; Conservation of the d-mannose-adhesion protein among type 1 fimbriated members of the family Enterobacteriaceae. Nature 336:682–684 [CrossRef]
    [Google Scholar]
  3. Allen-Vercoe E., Woodward M. J. 1999; The role of flagella, but not fimbriae, in the adherence of Salmonella enterica serotype Enteritidis to chick gut explants. J Med Microbiol 48:771–780 [CrossRef]
    [Google Scholar]
  4. Allen-Vercoe E., Sayers A. R., Woodward M. J. 1999; Virulence of Salmonella enterica serotype Enteritidis aflagellate and afimbriate mutants in a day-old chick model. Epidemiol Infect 122:395–402 [CrossRef]
    [Google Scholar]
  5. Barrow P. A. 1998; Virulence of Salmonella enterica serovar Enteritidis. In Salmonella Enterica Serovar Enteritidis in Humans and Animals: Epidemiology, Pathogenesis and Control pp 173–182 Edited by Saeed A. M., Gast R. K., Potter M., Wall P. G. Ames: Iowa State University Press;
    [Google Scholar]
  6. Boddicker J. D., Ledeboer N. A., Jagnow J., Jones B. D., Clegg S. 2002; Differential binding to and biofilm formation on, HEp-2 cells by Salmonella enterica serovar Typhimurium is dependent upon allelic variation in the fimH gene of the fim gene cluster. Mol Microbiol 45:1255–1265 [CrossRef]
    [Google Scholar]
  7. Boratynski J., Roy R. 1998; High temperature conjugation of proteins with carbohydrates. Glycoconj J 15:131–138 [CrossRef]
    [Google Scholar]
  8. Christensen B., Kieler J., Vilien M., Don P., Wang C. Y., Wolf H. 1984; A classification of human urothelial cells propagated in vitro. Anticancer Res 4:319–338
    [Google Scholar]
  9. Clegg S., Gerlach G. F. 1987; Enterobacterial fimbriae. J Bacteriol 169:934–938
    [Google Scholar]
  10. Clouthier S. C., Doran J. L., Collinson S. K., Kay W. W, Müller K.-H. 1993; Characterization of three fimbrial genes, sef ABC, of Salmonella enteritidis . J Bacteriol 175:2523–2533
    [Google Scholar]
  11. Collinson S. K., Clouthier S. C., Doran J. L., Banser P. A., Kay W. W. 1996; Salmonella enteritidis agf BAC operon encoding thin, aggregative fimbriae. J Bacteriol 178:662–667
    [Google Scholar]
  12. De Buck J., Van Immerseel F., Meulemans G., Haesebrouck F., Ducatelle R. 2003; Adhesion of Salmonella enterica serotype Enteritidis isolates to chicken isthmal glandular secretions. Vet Microbiol 93:223–233 [CrossRef]
    [Google Scholar]
  13. Dibb-Fuller M. P., Woodward M. J. 2000; Contribution of fimbriae and flagella of Salmonella enteritidis to colonization and invasion of chicks. Avian Pathol 29:295–304 [CrossRef]
    [Google Scholar]
  14. Dibb-Fuller M. P., Allen-Vercoe E., Thorns C. J., Woodward M. J. 1999; Fimbriae- and flagella-mediated association with and invasion of cultured epithelial cells by Salmonella enteritidis . Microbiology 145:1023–1031 [CrossRef]
    [Google Scholar]
  15. Duguid J. P., Anderson E. S., Campbell I. 1966; Fimbriae and adhesive properties in Salmonellae. J Pathol Bacteriol 92:107–138 [CrossRef]
    [Google Scholar]
  16. Duk M., Lisowska E., Wu J. H., Wu A. M. 1994; The biotin/avidin-mediated microtiter plate lectin assay with the use of chemically modified glycoprotein ligand. Anal Biochem 221:266–272 [CrossRef]
    [Google Scholar]
  17. Edwards R. A., Olsen G. J., Maloy S. R. 2002; Comparative genomics of closely related salmonellae. Trends Microbiol 10:94–99 [CrossRef]
    [Google Scholar]
  18. Ewen S. W., Naughton P. J., Grant G., Sojka M., Allen-Vercoe E., Bardocz S., Thorns C. J., Pusztai A. 1997; Salmonella enterica var Typhimurium and Salmonella enterica var Enteritidis express type 1 fimbriae in the rat in vivo. FEMS Immunol Med Microbiol 18:185–192 [CrossRef]
    [Google Scholar]
  19. Firon N., Ofek I., Sharon N. 1983; Carbohydrate specificity of the surface lectins of Escherichia coli , Klebsiella pneumoniae and Salmonella typhimurium . Carbohydr Res 120:235–249 [CrossRef]
    [Google Scholar]
  20. Firon N., Ofek I., Sharon N. 1984; Carbohydrate-binding sites of the mannose-specific fimbrial lectins of enterobacteria. Infect Immun 43:1088–1090
    [Google Scholar]
  21. Fu D., Chen L., O'Neill R. A. 1994; A detailed structural characterization of ribonuclease B oligosaccharides by 1H NMR spectroscopy and mass spectrometry. Carbohydr Res 261:173–186 [CrossRef]
    [Google Scholar]
  22. Hancox L. S., Kuang-Sheng Y., Clegg S. 1998; Construction and characterization of type 1 non-fimbriate and non-adhesive mutants of Salmonella typhimurium . FEMS Immunol Med Microbiol 19:289–296
    [Google Scholar]
  23. Humphries A. D., Raffatellu M., Winter S. 10 other authors 2003; The use of flow cytometry to detect expression of subunits encoded by 11 Salmonella enterica serotype Typhimurium fimbrial operons. Mol Microbiol 48:1357–1376 [CrossRef]
    [Google Scholar]
  24. Kimmich G. A. 1970; Preparation and properties of mucosal epithelial cells isolated from small intestine of the chicken. Biochemistry 9:3659–3668 [CrossRef]
    [Google Scholar]
  25. Kisiela D., Kiczak L., Kuzminska M., Kuczkowski M., Franiczek R., Ugorski M. 2005a; Analysis of the fimH gene coding type 1 fimbriae adhesin of Salmonella enterica serovar Enteritidis. Med Wet 61:1259–1262
    [Google Scholar]
  26. Kisiela D., Sapeta A. M., Kuczkowski M., Stefaniak T., Wieliczko A., Ugorski M. 2005b; Characterization of FimH adhesins expressed by Salmonella enterica serovar Gallinarum biovars Gallinarum and Pullorum: reconstitution of mannose-binding properties by single amino acid substitution. Infect Immun 73:6187–6190 [CrossRef]
    [Google Scholar]
  27. Krogfelt K. A., Bergmans H., Klemm P. 1990; Direct evidence that the FimH protein is the adhesin of Escherichia coli type 1 fimbriae. Infect Immun 58:1995–1999
    [Google Scholar]
  28. Kurosaka A., Yano A., Nobuyuki I., Kuroda Y., Nakagawa T., Kawasaki T. 1991; The structure of a neural specific carbohydrate epitope of horseradish peroxidase recognized by anti-horseradish peroxidase antiserum. J Biol Chem 266:4168–4172
    [Google Scholar]
  29. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  30. Müller K.-H., Collinson K., Trust T. J., Kay W. W. 1991; Type 1 fimbriae of Salmonella enteritidis . J Bacteriol 173:4765–4772
    [Google Scholar]
  31. Old D. C. 1972; Inhibition of interaction between fimbrial haemagglutinins and erythrocytes by d-mannose and other carbohydrates. J Gen Microbiol 71:149–157 [CrossRef]
    [Google Scholar]
  32. Naughton P. J., Grant G., Bardocz S., Allen-Vercoe E., Woodward M. J., Pusztai A. 2001; Expression of type 1 fimbriae (SEF 21) of Salmonella enterica serotype enteritidis in the early colonisation of the rat intestine. J Med Microbiol 50:191–197
    [Google Scholar]
  33. Porwolik S., McClelland M. 2003; Lateral gene transfer in Salmonella . Microb Infect 5:977–989 [CrossRef]
    [Google Scholar]
  34. Rajashekara G., Munir S., Alexeyev M. F., Halvorson D. A., Wells C. L., Nagaraja K. V. 2000; Pathogenic role of SEF14, SEF17, and SEF21 fimbriae in Salmonella enterica serovar Enteritidis infection of chickens. Appl Environ Microbiol 66:1759–1763 [CrossRef]
    [Google Scholar]
  35. Raschke W. C., Ballou C. E. 1972; Characterization of a yeast mannan containing N -acetyl-d-glucosamine as an immunochemical determinant. Biochemistry 11:3807–3816 [CrossRef]
    [Google Scholar]
  36. Sohel I., Puente J. L., Murray W. J., Vuopio-Varkila J., Schoolnik G. K. 1993; Cloning and characterization of the bundle-forming pilin gene of enteropathogenic Escherichia coli and its distribution in Salmonella serotypes. Mol Microbiol 7:563–575 [CrossRef]
    [Google Scholar]
  37. Sokurenko E. V., Courtney H. S., Ohman D. E., Klemm P., Hasty D. L. 1994; FimH family of type 1 fimbrial adhesins: functional heterogeneity due to minor sequence variations among fimH genes. J Bacteriol 176:748–755
    [Google Scholar]
  38. Sokurenko E. V., Courtney H. S., Maslow J., Siitonen A., Hasty D. L. 1995; Quantitative differences in adhesiveness of type 1 fimbriated Escherichia coli due to structural differences in fimH genes. J Bacteriol 177:3680–3686
    [Google Scholar]
  39. Takahashi N., Lee B. K., Nakagawa H., Tsukamoto Y., Masuda K., Lee Y. C. 1998; New N -glycans in horseradish peroxidase. Anal Biochem 255:183–187 [CrossRef]
    [Google Scholar]
  40. Thankavel K., Shah A. H., Cohen M. S., Ikeda T., Lorenz R. G., Curtiss R., Abraham S. N. 1999; Molecular basis for the enterocyte tropism exhibited by Salmonella typhimurium type 1 fimbriae. J Biol Chem 274:55797–55809
    [Google Scholar]
  41. Thorns C. J. 1995; Salmonella fimbriae: novel antigens in the detection and control of Salmonella infections. Br Vet J 151:643–658 [CrossRef]
    [Google Scholar]
  42. Woodward M. J., Allen-Vercoe E., Redstone J. S. 1996; Distribution, gene sequence and expression in vivo of the plasmid encoded fimbrial antigen of Salmonella serotype Enteritidis. Epidemiol Infect 117:17–28 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28588-0
Loading
/content/journal/micro/10.1099/mic.0.28588-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed