1887
Preview this article:
Zoom in
Zoomout

Evolutionary appearance of H-translocating pyrophosphatases, Page 1 of 1

| /docserver/preview/fulltext/micro/152/5/1243-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28581-0
2006-05-01
2021-05-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/5/1243.html?itemId=/content/journal/micro/10.1099/mic.0.28581-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Zhang J., Zhang Z., Miller W., Lipman D. J, Schäffer A. A. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Baltscheffsky M., Baltscheffsky H. 1993; Inorganic pyrophosphate and inorganic pyrophosphatases. In Molecular Mechanisms in Bioenergetics pp 331–348 Edited by Ernster L. Amsterdam: Elsevier;
    [Google Scholar]
  3. Baltscheffsky M., Schultz A., Baltscheffsky H. 1999; H+-PPases: a tightly membrane-bound family. FEBS Lett 457:527–533 [CrossRef]
    [Google Scholar]
  4. Bäumer S., Lentes S., Gottschalk G., Deppenmeier U. 2002; Identification and analysis of proton-translocating pyrophosphatases in the methanogenic archaeon Methansarcina mazei . Archaea 1:1–7 [CrossRef]
    [Google Scholar]
  5. Belogurov G. A., Turkina M. V., Penttinen A., Huopalahti S., Baykov A. A., Lahti R. 2002; H+-pyrophosphatase of Rhodospirillum rubrum . High yield expression in Escherichia coli and identification of the Cys residues responsible for inactivation by mersalyl. J Biol Chem 277:22209–22214 [CrossRef]
    [Google Scholar]
  6. Blumwald E., Aharon G. S., Apse M. P. 2000; Sodium transport in plant cells. Biochim Biophys Acta 1465140–151 [CrossRef]
    [Google Scholar]
  7. Chung Y. J., Krueger C., Metzgar D, Saier M. H. Jr 2001; Size comparisons among integral membrane transport protein homologues in bacteria, archaea, and eucarya. J Bacteriol 183:1012–1021 [CrossRef]
    [Google Scholar]
  8. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395 [CrossRef]
    [Google Scholar]
  9. Drozdowicz Y. M., Rea P. A. 2001; Vacuolar H+ pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends Plant Sci 6:206–211 [CrossRef]
    [Google Scholar]
  10. Drozdowicz Y. M., Lu Y.-P., Patel V., Fitz-Gibbon S., Miller J. H., Rea P. A. 1999; A thermostable vacuolar-type membrane pyrophosphatase from the archaeon Pyrobaculum aerophilum : implication for the origins of pyrophosphate-energized pumps. FEBS Lett 460:505–512 [CrossRef]
    [Google Scholar]
  11. Drozdowicz Y. M., Kissinger J. C., Rea P. A. 2000; AVP2, a sequence-divergent, K+-insensitive H+-translocating inorganic pyrophosphatase from Arabidopsis . Plant Physiol 123:353–362 [CrossRef]
    [Google Scholar]
  12. Drozdowicz Y. M., Shaw M., Nishi M., Striepen B., Liwinski H. A., Roos D. S., Rea P. A. 2003; Isolation and characterization of TgVP1, a type I vacuolar H+-translocating pyrophosphatase from Toxoplasma gondii . The dynamics of its subcellular localization and the cellular effects of a diphosphonate inhibitor. J Biol Chem 278:1075–1085 [CrossRef]
    [Google Scholar]
  13. García-Contreras R., Celis H., Romero I. 2004; Importance of Rhodospirillum rubrum H+-pyrophosphatase under low-energy conditions. J Bacteriol 186:6651–6655 [CrossRef]
    [Google Scholar]
  14. Kim E. J., Zhen R. G., Rea P. A. 1994; Isolation and characterization of cDNAs encoding the vacuolar H+-pyrophosphatase of Beta vulgaris . Plant Physiol 106:375–382 [CrossRef]
    [Google Scholar]
  15. Kim E. J., Zhen R. G., Rea P. A. 1995; Site-directed mutagenesis of vacuolar H+-pyrophosphatase. Necessity of Cys634 for inhibition by maleimides but not catalysis. J Biol Chem 270:2630–2635 [CrossRef]
    [Google Scholar]
  16. López-Marqués R. L., Pérez-Castiñeira J. R., Losada M., Serrano A. 2004; Differential regulation of soluble and membrane-bound inorganic pyrophosphatases in the photosynthetic bacterium Rhodospirillum rubrum provides insights into pyrophosphate-based stress bioenergetics. J Bacteriol 186:5418–5426 [CrossRef]
    [Google Scholar]
  17. Mimura H., Nakanishi Y., Hirono M., Maeshima M. 2004; Membrane topology of the H+-pyrophosphatase of Streptomyces coelicolor determined by cysteine-scanning mutagenesis. J Biol Chem 279:35106–35112 [CrossRef]
    [Google Scholar]
  18. Moriyama Y., Hayashi M., Yatsushiro S., Yamamoto A. 2003; Vacuolar proton pumps in malaria parasite cells. J Bioenerg Biomembr 35:367–375 [CrossRef]
    [Google Scholar]
  19. Motta L. S., Oliveira D. M., Machado E. A, da Silva W. S., de Souza W. 2004; A new model for proton pumping in animal cells: the role of pyrophosphate. Insect Biochem Mol Biol 34:19–27 [CrossRef]
    [Google Scholar]
  20. Palma D. A., Blumwald E., Plaxton W. C. 2000; Upregulation of vacuolar H+-translocating pyrophosphatase by phosphate starvation of Brassica napus (rapeseed) suspension cell cultures. FEBS Lett 486:155–158 [CrossRef]
    [Google Scholar]
  21. Ruiz F. A., Marchesini N., Seufferheld M., Govindjee, Docampo R. 2001; The polyphosphate bodies of Chlamydomonas reinhardtii possess a proton-pumping pyrophosphatase and are similar to acidocalcisomes. J Biol Chem 276:46196–46203 [CrossRef]
    [Google Scholar]
  22. Saier M. H. Jr 1994; Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol Rev 58:71–93
    [Google Scholar]
  23. Saier M. H. Jr 2003a; Tracing pathways of transport protein evolution. Mol Microbiol 48:1145–1156 [CrossRef]
    [Google Scholar]
  24. Saier M. H. Jr 2003b; Answering fundamental questions in biology with bioinformatics. ASM News 69:175–181
    [Google Scholar]
  25. Sarafian V., Kim Y., Poole R. J., Rea P. A. 1992a; Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana . Proc Natl Acad Sci U S A 89:1775–1779 [CrossRef]
    [Google Scholar]
  26. Sarafian V., Potier M., Poole R. J. 1992b; Radiation-inactivation analysis of vacuolar H+-ATPase and H+-pyrophosphatase from beta vulgaris L. Functional sizes for substrate hydrolysis and for H+ transport. Biochem J 283:493–497
    [Google Scholar]
  27. Seufferheld M., Vieira M. C., Ruiz F. A., Rodrigues C. O., Moreno S. N., Docampo R. 2003; Identification of organelles in bacteria similar to acidocalcisomes of unicellular eukaryotes. J Biol Chem 278:29971–29978 [CrossRef]
    [Google Scholar]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  29. Zhai Y, Saier M. H. Jr 2001a; A web-based program (what) for the simultaneous prediction of hydropathy, amphipathicity, secondary structure and transmembrane topology for a single protein sequence. J Mol Microbiol Biotechnol 3:501–502
    [Google Scholar]
  30. Zhai Y, Saier M. H. Jr 2001b; A web-based program for the prediction of average hydropathy, average amphipathicity and average similarity of multiply aligned homologous proteins. J Mol Microbiol Biotechnol 3:285–286
    [Google Scholar]
  31. Zhai Y, Saier M. H. Jr 2002; A simple sensitive program for detecting internal repeats in sets of multiply aligned homologous proteins. J Mol Microbiol Biotechnol 4:29–31
    [Google Scholar]
  32. Zhen R.-G., Kim E. J., Rea P. A. 1994; Localization of cytosolically oriented maleimide-reactive domain of vacuolar H+-pyrophosphatase. J Biol Chem 269:23342–23350
    [Google Scholar]
  33. Zhen R.-G., Kim E. J., Rea P. A. 1997a; Acidic residues necessary for pyrophosphate-energized pumping and inhibition of the vacuolar H+-pyrophosphatase by N,N ′-dicyclohexylcarbodiimide. J Biol Chem 272:22340–22348 [CrossRef]
    [Google Scholar]
  34. Zhen R.-G., Kim E. J., Rea P. A. 1997b; The molecular and biochemical basis of pyrophosphate-energized proton translocation at the vacuolar membrane. Adv Bot Res 25:297–337
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28581-0
Loading
/content/journal/micro/10.1099/mic.0.28581-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error