1887
Preview this article:
Zoom in
Zoomout

Evolutionary appearance of H-translocating pyrophosphatases, Page 1 of 1

| /docserver/preview/fulltext/micro/152/5/1243-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28581-0
2006-05-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/5/1243.html?itemId=/content/journal/micro/10.1099/mic.0.28581-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Baltscheffsky, M. & Baltscheffsky, H. ( 1993; ). Inorganic pyrophosphate and inorganic pyrophosphatases. In Molecular Mechanisms in Bioenergetics, pp. 331–348. Edited by L. Ernster. Amsterdam: Elsevier.
  3. Baltscheffsky, M., Schultz, A. & Baltscheffsky, H. ( 1999; ). H+-PPases: a tightly membrane-bound family. FEBS Lett 457, 527–533.[CrossRef]
    [Google Scholar]
  4. Bäumer, S., Lentes, S., Gottschalk, G. & Deppenmeier, U. ( 2002; ). Identification and analysis of proton-translocating pyrophosphatases in the methanogenic archaeon Methansarcina mazei. Archaea 1, 1–7.[CrossRef]
    [Google Scholar]
  5. Belogurov, G. A., Turkina, M. V., Penttinen, A., Huopalahti, S., Baykov, A. A. & Lahti, R. ( 2002; ). H+-pyrophosphatase of Rhodospirillum rubrum. High yield expression in Escherichia coli and identification of the Cys residues responsible for inactivation by mersalyl. J Biol Chem 277, 22209–22214.[CrossRef]
    [Google Scholar]
  6. Blumwald, E., Aharon, G. S. & Apse, M. P. ( 2000; ). Sodium transport in plant cells. Biochim Biophys Acta 1465, 140–151.[CrossRef]
    [Google Scholar]
  7. Chung, Y. J., Krueger, C., Metzgar, D. & Saier, M. H., Jr ( 2001; ). Size comparisons among integral membrane transport protein homologues in bacteria, archaea, and eucarya. J Bacteriol 183, 1012–1021.[CrossRef]
    [Google Scholar]
  8. Devereux, J., Haeberli, P. & Smithies, O. ( 1984; ). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12, 387–395.[CrossRef]
    [Google Scholar]
  9. Drozdowicz, Y. M. & Rea, P. A. ( 2001; ). Vacuolar H+ pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends Plant Sci 6, 206–211.[CrossRef]
    [Google Scholar]
  10. Drozdowicz, Y. M., Lu, Y.-P., Patel, V., Fitz-Gibbon, S., Miller, J. H. & Rea, P. A. ( 1999; ). A thermostable vacuolar-type membrane pyrophosphatase from the archaeon Pyrobaculum aerophilum: implication for the origins of pyrophosphate-energized pumps. FEBS Lett 460, 505–512.[CrossRef]
    [Google Scholar]
  11. Drozdowicz, Y. M., Kissinger, J. C. & Rea, P. A. ( 2000; ). AVP2, a sequence-divergent, K+-insensitive H+-translocating inorganic pyrophosphatase from Arabidopsis. Plant Physiol 123, 353–362.[CrossRef]
    [Google Scholar]
  12. Drozdowicz, Y. M., Shaw, M., Nishi, M., Striepen, B., Liwinski, H. A., Roos, D. S. & Rea, P. A. ( 2003; ). Isolation and characterization of TgVP1, a type I vacuolar H+-translocating pyrophosphatase from Toxoplasma gondii. The dynamics of its subcellular localization and the cellular effects of a diphosphonate inhibitor. J Biol Chem 278, 1075–1085.[CrossRef]
    [Google Scholar]
  13. García-Contreras, R., Celis, H. & Romero, I. ( 2004; ). Importance of Rhodospirillum rubrum H+-pyrophosphatase under low-energy conditions. J Bacteriol 186, 6651–6655.[CrossRef]
    [Google Scholar]
  14. Kim, E. J., Zhen, R. G. & Rea, P. A. ( 1994; ). Isolation and characterization of cDNAs encoding the vacuolar H+-pyrophosphatase of Beta vulgaris. Plant Physiol 106, 375–382.[CrossRef]
    [Google Scholar]
  15. Kim, E. J., Zhen, R. G. & Rea, P. A. ( 1995; ). Site-directed mutagenesis of vacuolar H+-pyrophosphatase. Necessity of Cys634 for inhibition by maleimides but not catalysis. J Biol Chem 270, 2630–2635.[CrossRef]
    [Google Scholar]
  16. López-Marqués, R. L., Pérez-Castiñeira, J. R., Losada, M. & Serrano, A. ( 2004; ). Differential regulation of soluble and membrane-bound inorganic pyrophosphatases in the photosynthetic bacterium Rhodospirillum rubrum provides insights into pyrophosphate-based stress bioenergetics. J Bacteriol 186, 5418–5426.[CrossRef]
    [Google Scholar]
  17. Mimura, H., Nakanishi, Y., Hirono, M. & Maeshima, M. ( 2004; ). Membrane topology of the H+-pyrophosphatase of Streptomyces coelicolor determined by cysteine-scanning mutagenesis. J Biol Chem 279, 35106–35112.[CrossRef]
    [Google Scholar]
  18. Moriyama, Y., Hayashi, M., Yatsushiro, S. & Yamamoto, A. ( 2003; ). Vacuolar proton pumps in malaria parasite cells. J Bioenerg Biomembr 35, 367–375.[CrossRef]
    [Google Scholar]
  19. Motta, L. S., da Silva, W. S., Oliveira, D. M., de Souza, W. & Machado, E. A. ( 2004; ). A new model for proton pumping in animal cells: the role of pyrophosphate. Insect Biochem Mol Biol 34, 19–27.[CrossRef]
    [Google Scholar]
  20. Palma, D. A., Blumwald, E. & Plaxton, W. C. ( 2000; ). Upregulation of vacuolar H+-translocating pyrophosphatase by phosphate starvation of Brassica napus (rapeseed) suspension cell cultures. FEBS Lett 486, 155–158.[CrossRef]
    [Google Scholar]
  21. Ruiz, F. A., Marchesini, N., Seufferheld, M., Govindjee & Docampo, R. ( 2001; ). The polyphosphate bodies of Chlamydomonas reinhardtii possess a proton-pumping pyrophosphatase and are similar to acidocalcisomes. J Biol Chem 276, 46196–46203.[CrossRef]
    [Google Scholar]
  22. Saier, M. H., Jr ( 1994; ). Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol Rev 58, 71–93.
    [Google Scholar]
  23. Saier, M. H., Jr ( 2003a; ). Tracing pathways of transport protein evolution. Mol Microbiol 48, 1145–1156.[CrossRef]
    [Google Scholar]
  24. Saier, M. H., Jr ( 2003b; ). Answering fundamental questions in biology with bioinformatics. ASM News 69, 175–181.
    [Google Scholar]
  25. Sarafian, V., Kim, Y., Poole, R. J. & Rea, P. A. ( 1992a; ). Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana. Proc Natl Acad Sci U S A 89, 1775–1779.[CrossRef]
    [Google Scholar]
  26. Sarafian, V., Potier, M. & Poole, R. J. ( 1992b; ). Radiation-inactivation analysis of vacuolar H+-ATPase and H+-pyrophosphatase from beta vulgaris L. Functional sizes for substrate hydrolysis and for H+ transport. Biochem J 283, 493–497.
    [Google Scholar]
  27. Seufferheld, M., Vieira, M. C., Ruiz, F. A., Rodrigues, C. O., Moreno, S. N. & Docampo, R. ( 2003; ). Identification of organelles in bacteria similar to acidocalcisomes of unicellular eukaryotes. J Biol Chem 278, 29971–29978.[CrossRef]
    [Google Scholar]
  28. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  29. Zhai, Y. & Saier, M. H., Jr ( 2001a; ). A web-based program (what) for the simultaneous prediction of hydropathy, amphipathicity, secondary structure and transmembrane topology for a single protein sequence. J Mol Microbiol Biotechnol 3, 501–502.
    [Google Scholar]
  30. Zhai, Y. & Saier, M. H., Jr ( 2001b; ). A web-based program for the prediction of average hydropathy, average amphipathicity and average similarity of multiply aligned homologous proteins. J Mol Microbiol Biotechnol 3, 285–286.
    [Google Scholar]
  31. Zhai, Y. & Saier, M. H., Jr ( 2002; ). A simple sensitive program for detecting internal repeats in sets of multiply aligned homologous proteins. J Mol Microbiol Biotechnol 4, 29–31.
    [Google Scholar]
  32. Zhen, R.-G., Kim, E. J. & Rea, P. A. ( 1994; ). Localization of cytosolically oriented maleimide-reactive domain of vacuolar H+-pyrophosphatase. J Biol Chem 269, 23342–23350.
    [Google Scholar]
  33. Zhen, R.-G., Kim, E. J. & Rea, P. A. ( 1997a; ). Acidic residues necessary for pyrophosphate-energized pumping and inhibition of the vacuolar H+-pyrophosphatase by N,N′-dicyclohexylcarbodiimide. J Biol Chem 272, 22340–22348.[CrossRef]
    [Google Scholar]
  34. Zhen, R.-G., Kim, E. J. & Rea, P. A. ( 1997b; ). The molecular and biochemical basis of pyrophosphate-energized proton translocation at the vacuolar membrane. Adv Bot Res 25, 297–337.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28581-0
Loading
/content/journal/micro/10.1099/mic.0.28581-0
Loading

Data & Media loading...

Supplements

Table S1.The 52 non-redundant, full-length, sequence-divergent H -PPase homologues chosen for the study.

Fig. S1.Analysis of the multiple sequence alignment.

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error