1887

Abstract

The innate immune system provides a non-specific first line of defence against microbes and is crucial both in the development and effector stages of subsequent adaptive immune responses. Consistent with its importance, study of the innate immune system is a broad and fast-moving field. Here we provide an overview of the recent key advances made in this area with relation to the important pathogen (the pneumococcus).

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28551-0
2006-02-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/2/285.html?itemId=/content/journal/micro/10.1099/mic.0.28551-0&mimeType=html&fmt=ahah

References

  1. Abeyta, M., Hardy, G. G. & Yother, J. ( 2003; ). Genetic alteration of capsule type but not PspA type affects accessibility of surface-bound complement and surface antigens of Streptococcus pneumoniae. Infect Immun 71, 218–225.[CrossRef]
    [Google Scholar]
  2. Albiger, B., Sandgren, A., Katsuragi, H., Meyer-Hoffert, U., Beiter, K., Wartha, F., Hornef, M., Normark, S. & Normark, B. H. ( 2005; ). Myeloid differentiation factor 88-dependent signalling controls bacterial growth during colonization and systemic pneumococcal disease in mice. Cell Microbiol 7, 1603–1615.[CrossRef]
    [Google Scholar]
  3. Angel, C. S., Ruzek, M. & Hostetter, M. K. ( 1994; ). Degradation of C3 by Streptococcus pneumoniae. J Infect Dis 170, 600–608.[CrossRef]
    [Google Scholar]
  4. Arredouani, M., Yang, Z., Ning, Y., Qin, G., Soininen, R., Tryggvason, K. & Kobzik, L. ( 2004; ). The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles. J Exp Med 200, 267–272.[CrossRef]
    [Google Scholar]
  5. Bauer, S., Kirschning, C. J., Hacker, H., Redecke, V., Hausmann, S., Akira, S., Wagner, H. & Lipford, G. B. ( 2001; ). Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci U S A 98, 9237–9242.[CrossRef]
    [Google Scholar]
  6. Benton, K. A., Paton, J. C. & Briles, D. E. ( 1997; ). The hemolytic and complement-activating properties of pneumolysin do not contribute individually to virulence in a pneumococcal bacteremia model. Microb Pathog 23, 201–209.[CrossRef]
    [Google Scholar]
  7. Bergmann, S. & Hammerschmidt, S. ( 2006; ). Versatility of pneumococcal surface proteins. Microbiology 152, 295–303.[CrossRef]
    [Google Scholar]
  8. Branger, J., Florquin, S., Knapp, S., Leemans, J. C., Pater, J. M., Speelman, P., Golenbock, D. T. & van der Poll, T. ( 2004a; ). LPS-binding protein-deficient mice have an impaired defense against Gram-negative but not Gram-positive pneumonia. Int Immunol 16, 1605–1611.[CrossRef]
    [Google Scholar]
  9. Branger, J., Knapp, S., Weijer, S., Leemans, J. C., Pater, J. M., Speelman, P., Florquin, S. & van der Poll, T. ( 2004b; ). Role of Toll-like receptor 4 in Gram-positive and Gram-negative pneumonia in mice. Infect Immun 72, 788–794.[CrossRef]
    [Google Scholar]
  10. Brown, J. S., Hussell, T., Gilliland, S. M., Holden, D. W., Paton, J. C., Ehrenstein, M. R., Walport, M. J. & Botto, M. ( 2002; ). The classical pathway is the dominant complement pathway required for innate immunity to Streptococcus pneumoniae infection in mice. Proc Natl Acad Sci U S A 99, 16969–16974.[CrossRef]
    [Google Scholar]
  11. Cauwels, A., Wan, E., Leismann, M. & Tuomanen, E. ( 1997; ). Coexistence of CD14-dependent and independent pathways for stimulation of human monocytes by Gram-positive bacteria. Infect Immun 65, 3255–3260.
    [Google Scholar]
  12. Chamaillard, M., Hashimoto, M., Horie, Y. & 12 other authors ( 2003; ). An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 4, 702–707.[CrossRef]
    [Google Scholar]
  13. Chen, A., Li, H. S., Hebda, P. A., Zeevi, A. & Swarts, J. D. ( 2005; ). Gene expression profiles of early pneumococcal otitis media in the rat. Int J Pediatr Otorhinolaryngol 69, 1383–1393.[CrossRef]
    [Google Scholar]
  14. Crouch, E. & Wright, J. R. ( 2001; ). Surfactant proteins A and D and pulmonary host defense. Annu Rev Physiol 63, 521–554.[CrossRef]
    [Google Scholar]
  15. Currie, A. J., Davidson, D. J., Reid, G. S., Bharya, S., MacDonald, K. L., Devon, R. S. & Speert, D. P. ( 2004; ). Primary immunodeficiency to pneumococcal infection due to a defect in Toll-like receptor signaling. J Pediatr 144, 512–518.[CrossRef]
    [Google Scholar]
  16. Echchannaoui, H., Frei, K., Schnell, C., Leib, S. L., Zimmerli, W. & Landmann, R. ( 2002; ). Toll-like receptor 2-deficient mice are highly susceptible to Streptococcus pneumoniae meningitis because of reduced bacterial clearing and enhanced inflammation. J Infect Dis 186, 798–806.[CrossRef]
    [Google Scholar]
  17. Echchannaoui, H., Frei, K., Letiembre, M., Strieter, R. M., Adachi, Y. & Landmann, R. ( 2005; ). CD14 deficiency leads to increased MIP-2 production, CXCR2 expression, neutrophil transmigration, and early death in pneumococcal infection. J Leukoc Biol 78, 705–715.[CrossRef]
    [Google Scholar]
  18. Girardin, S. E., Boneca, I. G., Carneiro, L. A. & 12 other authors ( 2003; ). Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science 300, 1584–1587.[CrossRef]
    [Google Scholar]
  19. Hamel, J., Charland, N., Pineau, I., Ouellet, C., Rioux, S., Martin, D. & Brodeur, B. R. ( 2004; ). Prevention of pneumococcal disease in mice immunized with conserved surface-accessible proteins. Infect Immun 72, 2659–2670.[CrossRef]
    [Google Scholar]
  20. Han, S. H., Kim, J. H., Martin, M., Michalek, S. M. & Nahm, M. H. ( 2003; ). Pneumococcal lipoteichoic acid (LTA) is not as potent as staphylococcal LTA in stimulating Toll-like receptor 2. Infect Immun 71, 5541–5548.[CrossRef]
    [Google Scholar]
  21. Hopkins, P. A. & Sriskandan, S. ( 2005; ). Mammalian Toll-like receptors: to immunity and beyond. Clin Exp Immunol 140, 395–407.[CrossRef]
    [Google Scholar]
  22. Hostetter, M. K. ( 2004; ). Interactions of Streptococcus pneumoniae with the proteins of the complement pathway. In The Pneumococcus, pp. 201–210. Edited by E. I. Tuomanen, T. J.Mitchell, D. A. Morrison & B. G. Spratt. Washington, DC: American Society for Microbiology.
  23. Janeway, C. A., Jr & Medzhitov, R. ( 2002; ). Innate immune recognition. Annu Rev Immunol 20, 197–216.[CrossRef]
    [Google Scholar]
  24. Jounblat, R., Kadioglu, A., Mitchell, T. J. & Andrew, P. W. ( 2003; ). Pneumococcal behavior and host responses during bronchopneumonia are affected differently by the cytolytic and complement-activating activities of pneumolysin. Infect Immun 71, 1813–1819.[CrossRef]
    [Google Scholar]
  25. Jounblat, R., Clark, H., Eggleton, P., Hawgood, S., Andrew, P. W. & Kadioglu, A. ( 2005; ). The role of surfactant protein D in the colonisation of the respiratory tract and onset of bacteraemia during pneumococcal pneumonia. Respir Res 6, 126.[CrossRef]
    [Google Scholar]
  26. Kadioglu, A., Gingles, N. A., Grattan, K., Kerr, A., Mitchell, T. J. & Andrew, P. W. ( 2000; ). Host cellular immune response to pneumococcal lung infection in mice. Infect Immun 68, 492–501.[CrossRef]
    [Google Scholar]
  27. Kadioglu, A., Coward, W., Colston, M. J., Hewitt, C. R. & Andrew, P. W. ( 2004; ). CD4-T-lymphocyte interactions with pneumolysin and pneumococci suggest a crucial protective role in the host response to pneumococcal infection. Infect Immun 72, 2689–2697.[CrossRef]
    [Google Scholar]
  28. Kang, Y. S., Kim, J. Y., Bruening, S. A. & 7 other authors ( 2004; ). The C-type lectin SIGN-R1 mediates uptake of the capsular polysaccharide of Streptococcus pneumoniae in the marginal zone of mouse spleen. Proc Natl Acad Sci U S A 101, 215–220.[CrossRef]
    [Google Scholar]
  29. Khan, A. Q., Chen, Q., Wu, Z. Q., Paton, J. C. & Snapper, C. M. ( 2005; ). Both innate immunity and type 1 humoral immunity to Streptococcus pneumoniae are mediated by MyD88 but differ in their relative levels of dependence on toll-like receptor 2. Infect Immun 73, 298–307.[CrossRef]
    [Google Scholar]
  30. Knapp, S., Wieland, C. W., van't Veer, C., Takeuchi, O., Akira, S., Florquin, S. & van der Poll, T. ( 2004; ). Toll-like receptor 2 plays a role in the early inflammatory response to murine pneumococcal pneumonia but does not contribute to antibacterial defense. J Immunol 172, 3132–3138.[CrossRef]
    [Google Scholar]
  31. Koedel, U., Angele, B., Rupprecht, T., Wagner, H., Roggenkamp, A., Pfister, H. W. & Kirschning, C. J. ( 2003; ). Toll-like receptor 2 participates in mediation of immune response in experimental pneumococcal meningitis. J Immunol 170, 438–444.[CrossRef]
    [Google Scholar]
  32. Koedel, U., Rupprecht, T., Angele, B., Heesemann, J., Wagner, H., Pfister, H. W. & Kirschning, C. J. ( 2004; ). MyD88 is required for mounting a robust host immune response to Streptococcus pneumoniae in the CNS. Brain 127, 1437–1445.[CrossRef]
    [Google Scholar]
  33. Komai-Koma, M., Jones, L., Ogg, G. S., Xu, D. & Liew, F. Y. ( 2004; ). TLR2 is expressed on activated T cells as a costimulatory receptor. Proc Natl Acad Sci U S A 101, 3029–3034.[CrossRef]
    [Google Scholar]
  34. Koppel, E. A., Wieland, C. W., Berg, V. C., Litjens, M., Florquin, S., Kooyk, Y. V., Poll, T. V. & Geijtenbeek, T. B. ( 2005; ). Specific ICAM-3 grabbing nonintegrin-related 1 (SIGNR1) expressed by marginal zone macrophages is essential for defense against pulmonary Streptococcus pneumoniae infection. Eur J Immunol (in press).
    [Google Scholar]
  35. Krieg, A. M. ( 2002; ). CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20, 709–760.[CrossRef]
    [Google Scholar]
  36. Kuronuma, K., Sano, H., Kato, K. & 9 other authors ( 2004; ). Pulmonary surfactant protein A augments the phagocytosis of Streptococcus pneumoniae by alveolar macrophages through a casein kinase 2-dependent increase of cell surface localization of scavenger receptor A. J Biol Chem 279, 21421–21430.[CrossRef]
    [Google Scholar]
  37. Lanoue, A., Clatworthy, M. R., Smith, P., Green, S., Townsend, M. J., Jolin, H. E., Smith, K. G., Fallon, P. G. & McKenzie, A. N. ( 2004; ). SIGN-R1 contributes to protection against lethal pneumococcal infection in mice. J Exp Med 200, 1383–1393.[CrossRef]
    [Google Scholar]
  38. Lysenko, E. S., Ratner, A. J., Nelson, A. L. & Weiser, J. N. ( 2005; ). The role of innate immune responses in the outcome of interspecies competition for colonization of mucosal surfaces. PLoS Pathog 1, el. Epub 2005 Jul 22. http://dx.doi.org/10.1371/journal.ppat.0010001
    [Google Scholar]
  39. Malley, R., Henneke, P., Morse, S. C. & 7 other authors ( 2003; ). Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci U S A 100, 1966–1971.[CrossRef]
    [Google Scholar]
  40. Malley, R., Trzcinski, K., Srivastava, A., Thompson, C. M., Anderson, P. W. & Lipsitch, M. ( 2005; ). CD4+ T cells mediate antibody-independent acquired immunity to pneumococcal colonization. Proc Natl Acad Sci U S A 102, 4848–4853.[CrossRef]
    [Google Scholar]
  41. McCullers, J. A. & Bartmess, K. C. ( 2003; ). Role of neuraminidase in lethal synergism between influenza virus and Streptococcus pneumoniae. J Infect Dis 187, 1000–1009.[CrossRef]
    [Google Scholar]
  42. Mitchell, T. J. ( 2004; ). Pneumolysin and other virulence proteins. In The Pneumococcus, pp. 61–74. Edited by E. I. Tuomanen, T. J. Mitchell, D. A. Morrison & B. G. Spratt. Washington, DC: American Society for Microbiology.
  43. Mitchell, T. J., Andrew, P. W., Saunders, F. K., Smith, A. N. & Boulnois, G. J. ( 1991; ). Complement activation and antibody binding by pneumolysin via a region of the toxin homologous to a human acute-phase protein. Mol Microbiol 5, 1883–1888.[CrossRef]
    [Google Scholar]
  44. Mold, C., Rodic-Polic, B. & Du Clos, T. W. ( 2002; ). Protection from Streptococcus pneumoniae infection by C-reactive protein and natural antibody requires complement but not Fc gamma receptors. J Immunol 168, 6375–6381.[CrossRef]
    [Google Scholar]
  45. Moscoso, M. & Claverys, J. P. ( 2004; ). Release of DNA into the medium by competent Streptococcus pneumoniae: kinetics, mechanism and stability of the liberated DNA. Mol Microbiol 54, 783–794.[CrossRef]
    [Google Scholar]
  46. Neish, A. S., Gewirtz, A. T., Zeng, H., Young, A. N., Hobert, M. E., Karmali, V., Rao, A. S. & Madara, J. L. ( 2000; ). Prokaryotic regulation of epithelial responses by inhibition of IκB-α ubiquitination. Science 289, 1560–1563.[CrossRef]
    [Google Scholar]
  47. Nelson, A. L., Barasch, J. M., Bunte, R. M. & Weiser, J. N. ( 2005; ). Bacterial colonization of nasal mucosa induces expression of siderocalin, an iron-sequestering component of innate immunity. Cell Microbiol 7, 1404–1417.[CrossRef]
    [Google Scholar]
  48. Opitz, B., Puschel, A., Schmeck, B., Hocke, A. C., Rosseau, S., Hammerschmidt, S., Schumann, R. R., Suttorp, N. & Hippenstiel, S. ( 2004; ). Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae. J Biol Chem 279, 36426–36432.[CrossRef]
    [Google Scholar]
  49. Orihuela, C. J., Radin, J. N., Sublett, J. E., Gao, G., Kaushal, D. & Tuomanen, E. I. ( 2004; ). Microarray analysis of pneumococcal gene expression during invasive disease. Infect Immun 72, 5582–5596.[CrossRef]
    [Google Scholar]
  50. Ozinsky, A., Underhill, D. M., Fontenot, J. D., Hajjar, A. M., Smith, K. D., Wilson, C. B., Schroeder, L. & Aderem, A. ( 2000; ). The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc Natl Acad Sci U S A 97, 13766–13771.[CrossRef]
    [Google Scholar]
  51. Paster, B. J., Boches, S. K., Galvin, J. L., Ericson, R. E., Lau, C. N., Levanos, V. A., Sahasrabudhe, A. & Dewhirst, F. E. ( 2001; ). Bacterial diversity in human subgingival plaque. J Bacteriol 183, 3770–3783.[CrossRef]
    [Google Scholar]
  52. Paton, J. C., Rowan-Kelly, B. & Ferrante, A. ( 1984; ). Activation of human complement by the pneumococcal toxin pneumolysin. Infect Immun 43, 1085–1087.
    [Google Scholar]
  53. Pauleau, A. L. & Murray, P. J. ( 2003; ). Role of Nod2 in the response of macrophages to toll-like receptor agonists. Mol Cell Biol 23, 7531–7539.[CrossRef]
    [Google Scholar]
  54. Pericone, C. D., Overweg, K., Hermans, P. W. & Weiser, J. N. ( 2000; ). Inhibitory and bactericidal effects of hydrogen peroxide production by Streptococcus pneumoniae on other inhabitants of the upper respiratory tract. Infect Immun 68, 3990–3997.[CrossRef]
    [Google Scholar]
  55. Philpott, D. J. & Girardin, S. E. ( 2004; ). The role of Toll-like receptors and Nod proteins in bacterial infection. Mol Immunol 41, 1099–1108.[CrossRef]
    [Google Scholar]
  56. Picard, C., Puel, A., Bonnet, M. & 27 other authors ( 2003; ). Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299, 2076–2079.[CrossRef]
    [Google Scholar]
  57. Pugin, J., Schurer-Maly, C. C., Leturcq, D., Moriarty, A., Ulevitch, R. J. & Tobias, P. S. ( 1993; ). Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc Natl Acad Sci U S A 90, 2744–2748.[CrossRef]
    [Google Scholar]
  58. Pugin, J., Heumann, I. D., Tomasz, A., Kravchenko, V. V., Akamatsu, Y., Nishijima, M., Glauser, M. P., Tobias, P. S. & Ulevitch, R. J. ( 1994; ). CD14 is a pattern recognition receptor. Immunity 1, 509–516.[CrossRef]
    [Google Scholar]
  59. Ratner, A. J., Lysenko, E. S., Paul, M. N. & Weiser, J. N. ( 2005; ). Synergistic proinflammatory responses induced by polymicrobial colonization of epithelial surfaces. Proc Natl Acad Sci U S A 102, 3429–3434.[CrossRef]
    [Google Scholar]
  60. Rogers, P. D., Thornton, J., Barker, K. S., McDaniel, D. O., Sacks, G. S., Swiatlo, E. & McDaniel, L. S. ( 2003; ). Pneumolysin-dependent and -independent gene expression identified by cDNA microarray analysis of THP-1 human mononuclear cells stimulated by Streptococcus pneumoniae. Infect Immun 71, 2087–2094.[CrossRef]
    [Google Scholar]
  61. Roy, S., Knox, K., Segal, S. & 9 other authors ( 2002; ). MBL genotype and risk of invasive pneumococcal disease: a case-control study. Lancet, 359, 1569–1573.[CrossRef]
    [Google Scholar]
  62. Schroder, N. W., Morath, S., Alexander, C., Hamann, L., Hartung, T., Zahringer, U., Gobel, U. B., Weber, J. R. & Schumann, R. R. ( 2003; ). Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem 278, 15587–15594.[CrossRef]
    [Google Scholar]
  63. Shakhnovich, E. A., King, S. J. & Weiser, J. N. ( 2002; ). Neuraminidase expressed by Streptococcus pneumoniae desialylates the lipopolysaccharide of Neisseria meningitidis and Haemophilus influenzae: a paradigm for interbacterial competition among pathogens of the human respiratory tract. Infect Immun 70, 7161–7164.[CrossRef]
    [Google Scholar]
  64. Srivastava, A., Henneke, P., Visintin, A. & 7 other authors ( 2005; ). The apoptotic response to pneumolysin is Toll-like receptor 4 dependent and protects against pneumococcal disease. Infect Immun 73, 6479–6487.[CrossRef]
    [Google Scholar]
  65. Szalai, A. J., Agrawal, A., Greenhough, T. J. & Volanakis, J. E. ( 1997; ). C-reactive protein: structural biology, gene expression, and host defense function. Immunol Res 16, 127–136.[CrossRef]
    [Google Scholar]
  66. Takeda, K., Kaisho, T. & Akira, S. ( 2003; ). Toll-like receptors. Annu Rev Immunol 21, 335–376.[CrossRef]
    [Google Scholar]
  67. Tong, H. H., Weiser, J. N., James, M. A. & DeMaria, T. F. ( 2001; ). Effect of influenza A virus infection on nasopharyngeal colonization and otitis media induced by transparent or opaque phenotype variants of Streptococcus pneumoniae in the chinchilla model. Infect Immun 69, 602–606.[CrossRef]
    [Google Scholar]
  68. Tong, H. H., Long, J. P., Shannon, P. A. & DeMaria, T. F. ( 2003; ). Expression of cytokine and chemokine genes by human middle ear epithelial cells induced by influenza A virus and Streptococcus pneumoniae opacity variants. Infect Immun 71, 4289–4296.[CrossRef]
    [Google Scholar]
  69. Tong, H. H., Long, J. P., Li, D. & DeMaria, T. F. ( 2004; ). Alteration of gene expression in human middle ear epithelial cells induced by influenza A virus and its implication for the pathogenesis of otitis media. Microb Pathog 37, 193–204.[CrossRef]
    [Google Scholar]
  70. Travassos, L. H., Girardin, S. E., Philpott, D. J., Blanot, D., Nahori, M. A., Werts, C. & Boneca, I. G. ( 2004; ). Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Rep 5, 1000–1006.[CrossRef]
    [Google Scholar]
  71. Um, S. H., Son, E. W., Kim, B. O., Moon, E. Y., Rhee, D. K. & Pyo, S. ( 2000; ). Activation of murine peritoneal macrophages by Streptococcus pneumoniae type II capsular polysaccharide: involvement of CD14-dependent pathway. Scand J Immunol 52, 39–45.[CrossRef]
    [Google Scholar]
  72. van der Sluijs, K. F., van Elden, L. J., Nijhuis, M. & 7 other authors ( 2004; ). IL-10 is an important mediator of the enhanced susceptibility to pneumococcal pneumonia after influenza infection. J Immunol 172, 7603–7609.[CrossRef]
    [Google Scholar]
  73. van Rossum, A. M., Lysenko, E. S. & Weiser, J. N. ( 2005; ). Host and bacterial factors contributing to the clearance of colonization by Streptococcus pneumoniae in a murine model. Infect Immun 73, 7718–7726.[CrossRef]
    [Google Scholar]
  74. Walport, M. J. ( 2001; ). Complement. First of two parts. N Engl J Med 344, 1058–1066.[CrossRef]
    [Google Scholar]
  75. Weber, J. R., Freyer, D., Alexander, C., Schroder, N. W., Reiss, A., Kuster, C., Pfeil, D., Tuomanen, E. I. & Schumann, R. R. ( 2003; ). Recognition of pneumococcal peptidoglycan: an expanded, pivotal role for LPS binding protein. Immunity 19, 269–279.[CrossRef]
    [Google Scholar]
  76. Whitsett, J. A. ( 2005; ). Surfactant proteins in innate host defense of the lung. Biol Neonate 88, 175–180.[CrossRef]
    [Google Scholar]
  77. Yamamoto, M., Takeda, K. & Akira, S. ( 2004; ). TIR domain-containing adaptors define the specificity of TLR signaling. Mol Immunol 40, 861–868.[CrossRef]
    [Google Scholar]
  78. Yoshimura, A., Lien, E., Ingalls, R. R., Tuomanen, E., Dziarski, R. & Golenbock, D. ( 1999; ). Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 163, 1–5.
    [Google Scholar]
  79. Yuste, J., Botto, M., Paton, J. C., Holden, D. W. & Brown, J. S. ( 2005; ). Additive inhibition of complement deposition by pneumolysin and PspA facilitates Streptococcus pneumoniae septicemia. J Immunol 175, 1813–1819.[CrossRef]
    [Google Scholar]
  80. Zhang, Y., Masi, A. W., Barniak, V., Mountzouros, K., Hostetter, M. K. & Green, B. A. ( 2001; ). Recombinant PhpA protein, a unique histidine motif-containing protein from Streptococcus pneumoniae, protects mice against intranasal pneumococcal challenge. Infect Immun 69, 3827–3836.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28551-0
Loading
/content/journal/micro/10.1099/mic.0.28551-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error