1887

Abstract

Certain well-conserved genes in fluorescent spp. are involved in pathogenic interactions between the bacteria and evolutionarily diverse hosts including plants, insects and vertebrate animals. One such gene, , encodes a periplasmic disulfide-bond-forming enzyme implicated in the biogenesis of exported proteins and cell surface structures. This study focused on the role of in Q8r1-96, a biological control strain that produces the antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) and is known for its exceptional ability to colonize the roots of wheat and pea. The deduced DsbA protein from Q8r1-96 is similar to other predicted thiol : disulfide interchange proteins and contains a conserved DsbA catalytic site, a pattern associated with the thioredoxin family active site, and a signal peptide and cleavage site. A mutant of Q8r1-96 exhibited decreased motility and fluorescence, and altered colony morphology; however, it produced more 2,4-DAPG and total phloroglucinol-related compounds and was more inhibitory to the fungal root pathogen var. than was the parental strain. When introduced separately into a natural soil, Q8r1-96 and the mutant did not differ in their ability to colonize the rhizosphere of wheat in greenhouse experiments lasting 12 weeks. However, when the two strains were co-inoculated, the parental strain consistently out-competed the mutant. It was concluded that does not contribute to the exceptional rhizosphere competence of Q8r1-96, although the mutation reduces competitiveness when the mutant competes with the parental strain in the same niche in the rhizosphere. The results also suggest that exoenzymes and multimeric cell surface structures are unlikely to have a critical role in root colonization by this strain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28545-0
2006-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/3/863.html?itemId=/content/journal/micro/10.1099/mic.0.28545-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M, Brent R, Kingston R. E, Moore D. D, Seidman J. G, Smith J. A, Struhl K. 1995 Short Protocols in Molecular Biology, 3rd edn.. New York: Wiley;
    [Google Scholar]
  2. Bahme J. B, Schroth M. N. 1987; Spatial-temporal colonization patterns of a rhizobacterium on underground organs of potato. Phytopathology 79:1093–1101
    [Google Scholar]
  3. Bakker A. W, Schippers B. 1987; Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biol Biochem 19:451–457 [CrossRef]
    [Google Scholar]
  4. Bangera M. G, Thomashow L. S. 1999; Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J Bacteriol 181:3155–3163
    [Google Scholar]
  5. Bardwell J. C. A, McGovern K, Beckwith J. 1991; Identification of a protein required for disulphide bond formation in vivo . Cell 67:581–589 [CrossRef]
    [Google Scholar]
  6. Bauer D. W, Collmer A. 1997; Molecular cloning, characterization, and mutagenesis of a pel gene from Pseudomonas syringae pv. lachrymans encoding a member of the Erwinia chrysenthemi PelADE family of pectate lyases. Mol Plant Microbe Interact 10:369–379 [CrossRef]
    [Google Scholar]
  7. Bendtsen J. D, Nielsen H, von Heijne G, Brunak S. 2004; Improved prediction of signal peptides: SignalP 3·0. J Mol Biol 340:783–795 [CrossRef]
    [Google Scholar]
  8. Birren B, Green E. D, Klapholz S, Myers M. R, Riethman H, Roskams J. 1999 Genome Analysis: a Laboratory Manual , vol. 3, Cloning Systems Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  9. Bonsall R. F, Weller D. M, Thomashow L. S. 1997; Quantification of 2·4-diacetylphloroglucinol produced by fluorescent Pseudomonas spp. in vitro and in the rhizosphere of wheat. Appl Environ Microbiol 63:951–955
    [Google Scholar]
  10. Bull C. T, Weller D. M, Thomashow L. S. 1991; Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strain 2-79. Phytopathology 81:954–959 [CrossRef]
    [Google Scholar]
  11. Camacho Carvajal M. M. 2000 Molecular characterization of the role of Type 4 pili, NADH-I and PyrR in rhizosphere colonization of Pseudomonas fluorescens WCS365 PhD Dissertation, Utrecht University; The Netherlands:
    [Google Scholar]
  12. Catlow H. J, Glenn A. R, Dilworth M. J. 1990; The use of transposon-induced non-motile mutants in assessing the significance of motility of Rhizobium leguminosarum biovar trifoli for movement in soils. Soil Biol Biochem 22:331–336 [CrossRef]
    [Google Scholar]
  13. Collet J. F, Bardwell J. C. 2002; Oxidative protein folding in bacteria. Mol Microbiol 44:1–8 [CrossRef]
    [Google Scholar]
  14. Dailey F. E, Berg H. C. 1993; Mutants in disulfide bond formation that disrupt flagellar assembly in Escherichia coli . Proc Natl Acad Sci U S A 90:1043–1047 [CrossRef]
    [Google Scholar]
  15. Dekkers L. C, van der Bij A. J, Mulders I. H. M, Phoelich C. C, Wentwoord R. A. R, Glandorf D. C. M, Wijffelman C. A, Lugtenberg B. J. J. 1998a; Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and of NADH : ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Mol Plant Microbe Interact 11:763–771 [CrossRef]
    [Google Scholar]
  16. Dekkers L. C, Phoelich C. C, van der Fits L, Lugtenberg B. J. J. 1998b; A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. Proc Natl Acad Sci U S A 95:7051–7056 [CrossRef]
    [Google Scholar]
  17. Dekkers L. C, Bloemendaal C. J. P, de Weger L. A, Wijffelman C. A, Spaink H. P, Lugtenberg B. J. J. 1998c; A two-component system plays an important role in the root-colonizing ability of Pseudomonas fluorescens strain WCS365. Mol Plant Microbe Interact 11:45–56 [CrossRef]
    [Google Scholar]
  18. Dekkers L. C, Mulders I. H. M, Phoelich C. C, Chin-a-Woeng T. F. C, Wijfjes A. H. M, Lugtenberg B. J. J. 2000; The sss colonization gene of the tomato- Fusarium oxysporum f.sp. radicis-lycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild-type Pseudomonas spp. bacteria. Mol Plant Microbe Interact 13:1177–1183 [CrossRef]
    [Google Scholar]
  19. de Weert S, Vermeiren H, Mulders I. H. M, Kuiper I, Hendrickx N, Bloemberg G. V, Vanderleyden J, De Mot R, Lugtenberg B. J. J. 2002; Flagella-driven chemotaxis towards exudates components is an important trait for tomato root colonization by Pseudomonas fluorescens . Mol Plant Microbe Interact 15:1173–1180 [CrossRef]
    [Google Scholar]
  20. de Weger L. A., Van der Vlugt C. I. M, Wijfjes A. H. M. M, Bakker P. A. H. B, Schippers B, Lugtenberg B. J. J. 1987; Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J Bacteriol 169:2769–2773
    [Google Scholar]
  21. Duffy B. K, Défago G. 1997; Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology 87:1250–1257 [CrossRef]
    [Google Scholar]
  22. Enderle P. J, Farwell M. A. 1998; Electroporation of freshly plated Escherichia coli and Pseudomonas aeruginosa cells. BioTechniques 25:954–958
    [Google Scholar]
  23. Griffin D. M, Quail G. 1968; Movement of bacteria in moist particulate systems. Aust J Biol Sci 21:579–582
    [Google Scholar]
  24. Heeb S, Itoh Y, Nishijyo T, Schnider U, Keel C, Wade J, Walsh U, O'Gara F, Haas D. 2000; Small, stable shuttle vectors based on the minimal pVS1 replicon for use in gram-negative, plant-associated bacteria. Mol Plant Microbe Interact 13:232–237 [CrossRef]
    [Google Scholar]
  25. House B. L, Mortimer M. W, Kahn M. L. 2004; New recombination methods for Sinorhizobium meliloti genetics. Appl Environ Microbiol 70:2806–2815 [CrossRef]
    [Google Scholar]
  26. Howie W. J, Cook R. J, Weller D. M. 1987; Effects of soil matric potential and cell motility on wheat root colonization by fluorescent Pseudomonas suppressive to take all. Phytopathology 77:286–292 [CrossRef]
    [Google Scholar]
  27. Hu S. H, Peek J. A, Rattigan E, Taylor R. K, Martin J. L. 1997; Structure of TcpG, the dsbA protein folding catalyst form Vibrio cholerae . J Mol Biol 268:137–146 [CrossRef]
    [Google Scholar]
  28. Jackson M. W, Plano G. V. 1999; DsbA is required for stable expression of outer membrane protein YscC and for efficient secretion in Yersinia pestis . J Bacteriol 181:5126–5130
    [Google Scholar]
  29. Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, Défago G. 1992; Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol Plant Microbe Interact 5:4–13 [CrossRef]
    [Google Scholar]
  30. King E. O, Ward M. K, Raney D. 1954; Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307
    [Google Scholar]
  31. Kloek A. P, Brooks D. M, Kunkel B. N. 2000; A dsb A mutant Pseudomonas syringae exhibits reduced virulence and partial impairment of type III secretion. Mol Plant Pathol 1:139–150 [CrossRef]
    [Google Scholar]
  32. Landa B. B, de Werd H. A. E, McSpadden Gardener B. B, Weller D. M. 2002a; Comparison of three methods for monitoring populations of different genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens in the rhizosphere. Phytopathology 92:129–137 [CrossRef]
    [Google Scholar]
  33. Landa B. B, Mavrodi O. V, Raaijmakers J, McSpadden Gardener B. B, Thomashow L. S, Weller D. M. 2002b; Differential ability of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains to colonize the roots of pea plants. Appl Environ Microbiol 68:3226–3237 [CrossRef]
    [Google Scholar]
  34. Landa B. B, Mavrodi D. V, Raaijmakers J, Thomashow L. S, Weller D. M. 2003; Interactions between strains of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains in the rhizosphere of wheat. Phytopathology 93:982–994 [CrossRef]
    [Google Scholar]
  35. Lugtenberg B. J. J, Dekkers L. C, Bloemberg G. V. 2001; Molecular determinants of rhizosphere colonization by Pseudomonas . Annu Rev Phytopathol 39:461–490 [CrossRef]
    [Google Scholar]
  36. Malhotra S, Silo-Suh L. A, Mathee K, Ohman D. E. 2000; Proteome analysis of the effect of mucoid conversation on global protein expression in Pseudomonas aeruginosa strain PAO1 shows induction of the disulfide bond isomerase, DsbA. J Bacteriol 182:6999–7006 [CrossRef]
    [Google Scholar]
  37. Mavrodi D. V, Bonsall R. F, Delaney S. M, Soule M. J, Phillips G, Thomashow L. S. 2001; Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183:6454–6465 [CrossRef]
    [Google Scholar]
  38. Mavrodi O. V. 2004 Phenotypic, genotypic and colonization properties of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. isolated from roots of wheat PhD dissertation, Washington State University; Pullman, WA:
    [Google Scholar]
  39. Mavrodi O. V, McSpadden Gardener B. B, Mavrodi D. V, Weller D. M, Thomashow L. S. 2001; Genetic diversity of phlD from 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. Phytopathology 91:35–43 [CrossRef]
    [Google Scholar]
  40. Mazurier S, Lemunier M, Siblot S, Mougel C, Lemanceau P. 2004; Distribution and diversity of type III secretion system-like genes in saprophytic and phytopathogenic fluorescent pseudomonads. FEMS Microbial Ecol 49:455–467 [CrossRef]
    [Google Scholar]
  41. McSpadden Gardener B. B, Weller D. M. 2001; Changes in populations of rhizosphere bacteria associated with take-all disease of wheat. Appl Environ Microbiol 67:4414–4425 [CrossRef]
    [Google Scholar]
  42. McSpadden Gardener B. B, Schroeder K. L, Kalloger S. E, Raaijmakers J. M, Thomashow L. S, Weller D. M. 2000; Genotypic and phenotypic diversity of phl D-containing Pseudomonas isolated from the rhizosphere of wheat. Appl Environ Microbiol 66:1939–1946 [CrossRef]
    [Google Scholar]
  43. McSpadden Gardener B. B, Mavrodi D. V, Thomashow L. S, Weller D. M. 2001; A rapid PCR-based assay characterizing rhizosphere populations of 2,4-DAPG-producing bacteria. Phytopathology 91:44–54 [CrossRef]
    [Google Scholar]
  44. Pagni M, Ioannidis V, Cerutti L, Zahn-Zabal M, Jongeneel C. V, Falquet L. 2004; Myhits: a new interactive resource for protein annotation and domain identification. Nucleic Acids Res 32: (Web Server issue) W332–335 [CrossRef]
    [Google Scholar]
  45. Preston G. M, Bertrand N, Rainey P. B. 2001; Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25. Mol Microbiol 41:999–1014
    [Google Scholar]
  46. Raaijmakers J. M, Weller D. M. 2001; Exploiting the genetic diversity of Pseudomonas spp: characterization of superior colonizing P. fluorescens strain Q8r1-96. Appl Environ Microbiol 67:2545–2554 [CrossRef]
    [Google Scholar]
  47. Rahme L. G, Tan M.-W, Le L, Wong S. M, Tompkins R. G, Calderwood S. B, Ausubel F. M. 1997; Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc Natl Acad Sci U S A 94:13245–13250 [CrossRef]
    [Google Scholar]
  48. Rahme L. G, Ausubel F. M, Cao H. 9 other authors 2000; Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci U S A 97:8815–8821 [CrossRef]
    [Google Scholar]
  49. Rainey P. B. 1999; Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol 1:243–257 [CrossRef]
    [Google Scholar]
  50. Rezzonico F, Défago G, Moënne-Loccoz Y. 2004; Comparison of ATP-encoding type III secretion system hrcN genes in biocontrol fluorescent pseudomonas and in phytopathogenic proteobacteria. Appl Environ Microbiol 70:5119–5131 [CrossRef]
    [Google Scholar]
  51. Rezzonico F, Binder C, Défago G, Moënne-Loccoz Y. 2005; The type III secretion system of biocontrol Pseudomonas fluorescens KD targets the phytopathogenic chromista Pythium ultimum and promotes cucumber protection. Mol Plant Microbe Interact 18:991–1001 [CrossRef]
    [Google Scholar]
  52. Sacherer P, Défago G, Haas D. 1994; Extracellular protease and phospholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHAO. FEMS Microbiol Lett 116:115–160
    [Google Scholar]
  53. Schweizer H. P. 1992; Allelic exchange in Pseudomonas aeruginosa using novel ColE1-type vectors and a family of cassettes containing portable oriT and the counter-selectable Bacillus subtillis sacB marker. Mol Microbiol 6:1195–1204 [CrossRef]
    [Google Scholar]
  54. Schwyn B, Neilands J. B. 1987; Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56 [CrossRef]
    [Google Scholar]
  55. Shanahan P, O'Sullivan D. J, Simpson P, Glennon J. D, O'Gara F. 1992; Isolation of 2,4-diacetylphlorogluciol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58:353–358
    [Google Scholar]
  56. Shevchik V. E, Bortoli-German I, Robert-Baudouy J, Robinet S, Barras F, Condemine G. 1995; Differential effect of dsbA and dsbC mutations on extracellular enzyme secretion in Erwinia chrysanthemi . Mol Microbiol 16:745–753 [CrossRef]
    [Google Scholar]
  57. Simons M, Permentier H. P, de Weger L. A, Wijffelman C. A, Lugtenberg B. J. J. 1997; Amino acid synthesis is necessary for tomato root colonization by Pseudomonas fluorescens strain WCS365. Mol Plant Microbe Interact 10:102–106 [CrossRef]
    [Google Scholar]
  58. Tamietti G, Ferraris L, Matta A, Abbattista Gentile I. 1993; Physiological responses of tomato plants grown in Fusarium suppressive soil. J Phytopathol 138:66–76 [CrossRef]
    [Google Scholar]
  59. Turnbull G. A, Morgan J. A. W, Whipps J. M, Saunders J. R. 2001; The role of bacterial motility in the survival and spread of Pseudomonas fluorescens in soil in the attachment and colonization of wheat roots. FEMS Microbiol Ecol 36:21–31 [CrossRef]
    [Google Scholar]
  60. Urban A, Leipelt M, Eggert T, Jaeger K.-E. 2001; DsbA and DsbC affect extracellular enzyme formation in Pseudomonas aeruginosa . J Bacteriol 183:587–596 [CrossRef]
    [Google Scholar]
  61. Validov S, Mavrodi O. V, De La Fuente L, Boronin A, Weller D. M, Thomashow L. S, Mavrodi D. V. 2005; Antagonistic activity among phlD -containing fluorescent Pseudomonas spp. FEMS Microbiol Lett 242:249–256 [CrossRef]
    [Google Scholar]
  62. Watarai M, Tobe T, Yoshikawa M, Sasakawa C. 1995; Disulfide oxidoreductase activity of Shigella flexneri is required for release of Ipa proteins and invasion of the epithelial cells. Proc Natl Acad Sci U S A 92:4927–4931 [CrossRef]
    [Google Scholar]
  63. Weller D. M. 1988; Biological control of soilborne pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407 [CrossRef]
    [Google Scholar]
  64. Weller D. M, Thomashow L. S. 1994; Current challenges in introducing beneficial microorganisms into the rhizosphere. In Molecular Ecology of Rhizosphere Microorganisms: Biotechnology and Release of GMOs pp  1–18 Edited by O'Gara F., Dowling D. N., Boesten B. New York: VCH;
    [Google Scholar]
  65. Whistler C. A, Corbell N. A, Sarniguet A, Ream W, Loper J. E. 1998; The two-component regulators GacS and GacA influence accumulation of the stationary-phase sigma factor σ [sup]54[/sup] and the stress response in Pseudomonas fluorescens Pf-5. J Bacteriol 180:6635–6641
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28545-0
Loading
/content/journal/micro/10.1099/mic.0.28545-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error