1887

Abstract

Nisin Z, a post-translationally modified antimicrobial peptide of , is positively autoregulated by extracellular nisin via the two-component regulatory proteins NisRK. A mutation in the nisin NisT transporter rendered incapable of nisin secretion, and nisin accumulated inside the cells. Normally nisin is activated after secretion by the serine protease NisP in the cell wall. This study showed that when secretion of nisin was blocked, intracellular proteolytic activity could cleave the N-terminal leader peptide of nisin precursor, resulting in active nisin. The isolated cytoplasm of a non-nisin producer could also cleave the leader from the nisin precursor, showing that the cytoplasm of cells does contain proteolytic activity capable of cleaving the leader from fully modified nisin precursor. Nisin could not be detected in the growth supernatant of the NisT mutant strain with a nisin-sensing strain (sensitivity 10 pg ml), which has a green fluorescent protein gene connected to the nisin-inducible promoter and a functional nisin signal transduction circuit. Northern analysis of the NisT mutant cells revealed that even though the cells could not secrete nisin, the nisin-inducible promoter P was active. In a or background, where nisin could not be fully modified due to the mutations in the nisin modification machinery, the unmodified or partly modified nisin precursor accumulated in the cytoplasm. This immature nisin could not induce the P promoter. The results suggest that when active nisin is accumulated in the cytoplasm, it can insert into the membrane and from there extrude parts of the molecule into the pseudoperiplasmic space to interact with the signal-recognition domain of the histidine kinase NisK. Potentially, signal presentation via the membrane represents a general pathway for amphiphilic signals to interact with their sensors for signal transduction.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28544-0
2006-05-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/5/1489.html?itemId=/content/journal/micro/10.1099/mic.0.28544-0&mimeType=html&fmt=ahah

References

  1. Ahmer, B. M. M. ( 2004; ). Cell-to-cell signaling in Escherichia coli and Salmonella enterica. Mol Microbiol 52, 933–945.[CrossRef]
    [Google Scholar]
  2. Bassler, B. L., Wright, M., Showalter, R. E. & Silverman, M. R. ( 1993; ). Intercellular signaling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol Microbiol 9, 773–786.[CrossRef]
    [Google Scholar]
  3. Bolotin, A., Wincker, P., Mauger, S., Jaillon, O., Malarme, K., Weissenbach, J., Ehrilch, S. D. & Sorokin, A. ( 2001; ). The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11, 731–753.[CrossRef]
    [Google Scholar]
  4. Chandrapati, S. & O'Sullivan, D. J. ( 1999; ). Nisin independent induction of the nisA promoter in Lactococcus lactis during growth in lactose or galactose. FEMS Microbiol Lett 70, 191–198.
    [Google Scholar]
  5. Chandrapati, S. & O'Sullivan, D. J. ( 2002; ). Characterization of the promoter regions involved in galactose- and nisin-mediated induction of the nisA gene in Lactoccocus lactis ATCC11454. Mol Microbiol 46, 467–477.[CrossRef]
    [Google Scholar]
  6. Chatterjee, C., Paul, M., Xie, L. & der Donk, W. A. ( 2005; ). Biosynthesis and mode of action of lantibiotics. Chem Rev 105, 633–684.[CrossRef]
    [Google Scholar]
  7. Crameri, A., Whitehorn, E. A., Tate, E. & Stremmer, W. P. C. ( 1996; ). Improved green fluorescent protein by molecular evaluation using DNA shuffling. Nat Biotechnol 14, 315–319.[CrossRef]
    [Google Scholar]
  8. Daniels, R., Vanderleyden, J. & Michiels, J. ( 2004; ). Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28, 261–289.[CrossRef]
    [Google Scholar]
  9. de Ruyter, P. G., Kuipers, O. P., Beerthuyzen, M. M., van Alen-Boerrigter, I. & de Vos, W. M. ( 1996; ). Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. J Bacteriol 178, 3434–3439.
    [Google Scholar]
  10. de Vos, W. M., Kuipers, O. P., van der Meer, J. R. & Siezen, R. J. ( 1995; ). Maturation pathway of nisin and other lantibiotics: post-translationally modified antimicrobial peptides exported by gram-positive bacteria. Mol Microbiol 17, 427–437.[CrossRef]
    [Google Scholar]
  11. Dunny, G. M. & Leonard, B. A. ( 1997; ). Cell-cell communication in gram-positive bacteria. Annu Rev Microbiol 51, 527–564.[CrossRef]
    [Google Scholar]
  12. Dutta, R., Qin, L. & Inouye, M. ( 1999; ). Histidine kinases: diversity of domain organization. Mol Microbiol 34, 633–640.[CrossRef]
    [Google Scholar]
  13. Engelke, G., Gutowski-Eckel, Z., Kiesau, P., Hammelmann, M. & Entian, K. D. ( 1994; ). Regulation of nisin biosynthesis and immunity in Lactococcus lactis 6F3. Appl Environ Microbiol 60, 814–825.
    [Google Scholar]
  14. Fabret, C., Feher, V. A. & Hoch, J. A. ( 1999; ). Two-component signal transduction in Bacillus subtilis: how one organism sees its world? J Bacteriol 181, 1975–1983.
    [Google Scholar]
  15. Gasson, M. J. ( 1983; ). Plasmid complements of Streptococcus lactis NCDDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154, 1–9.
    [Google Scholar]
  16. Graeffe, T., Rintala, H., Paulin, L. & Saris, P. ( 1991; ). A natural nisin variant. In Nisin and Novel Lantibiotics, pp. 260–268. Edited by G. Jung & H. G. Sahl. Leiden, The Netherlands: ESCOM Science Publishers B.V.
  17. Grebe, T. W. & Stock, J. B. ( 1999; ). The histidine protein kinase super family. Adv Microb Physiol 41, 139–227.
    [Google Scholar]
  18. Groll, M. & Clausen, T. ( 2003; ). Molecular shredders: how proteasomes fulfill their role. Curr Opin Struct Biol 13, 665–673.[CrossRef]
    [Google Scholar]
  19. Hakovirta, J., Reunanen, J. & Saris, P. E. J. ( 2006; ). Bioassay for nisin in milk, processed cheese, salad dressings, canned tomatoes and liquid eggs. Appl Environ Microbiol (in press).
    [Google Scholar]
  20. Hasper, H. E., de Kruijff, B. & Breukink, E. ( 2004; ). Assembly and stability of nisin-lipid II pores. Biochemist 43, 11567–11575.[CrossRef]
    [Google Scholar]
  21. Immonen, T. & Saris, P. E. J. ( 1998; ). Characterization of the nisFEG operon of the nisin Z producing Lactococcus lactis subsp. lactis N8 strain. DNA Seq 9, 263–274.
    [Google Scholar]
  22. Immonen, T., Ye, S., Ra, R., Qiao, M., Paulin, L. & Saris, P. E. J. ( 1995; ). The codon usage of the nisin Z operon in Lactococcus lactis N8 suggests a non-lactococcal origin of conjugative nisin-sucrose transposon. DNA Seq 5, 203–218.
    [Google Scholar]
  23. Kleerebezem, M., Quadri, L. E. N., Kuipers, O. P. & de Vos, W. M. ( 1997; ). Quorum sensing by peptide pheromones and two-component signal-transduction systems in gram-positive bacteria. Mol Microbiol 24, 895–904.[CrossRef]
    [Google Scholar]
  24. Kok, J., Buist, G., Zomer, A. L., van Hijum, S. A. F. T. & Kuipers, O. ( 2005; ). Comparative and functional genomics of lactococci. FEMS Microbiol Rev 29, 411–433.[CrossRef]
    [Google Scholar]
  25. Koponen, O., Tolonen, M., Qiao, M., Wahlström, G., Helin, J. & Saris, P. E. J. ( 2002; ). NisB is required for dehydration and NisC for the lanthionine formation in the post-translational modification of nisin. Microbiol 148, 3561–3568.
    [Google Scholar]
  26. Koretke, K. K., Lupas, A. N., Warren, P. V., Rosenberg, M. & Brown, J. R. ( 2000; ). Evolution of two-component signal transduction. Mol Biol and Evol 17, 1956–1970.[CrossRef]
    [Google Scholar]
  27. Kramer, G. & Weiss, V. ( 1999; ). Functional dissection of the transmitter module of the histidine kinase NtrB in Escherichia coli. Genetics 96, 604–609.
    [Google Scholar]
  28. Kuipers, O. P., Beerthuyzen, M. M., Siezen, R. J. & de Vos, W. M. ( 1993; ). Characterization of nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity. Eur J Biochem 216, 281–291.[CrossRef]
    [Google Scholar]
  29. Kuipers, O. P., Beerthuyzen, M. M., de Ruyter, P. C. M., Luesink, E. J. & de Vos, W. M. ( 1995; ). Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 270, 27299–27304.[CrossRef]
    [Google Scholar]
  30. Kuipers, O. P., de Ruyter, P. G. G. A., Kleerenbezem, M. & de Vos, W. M. ( 1998; ). Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64, 15–21.[CrossRef]
    [Google Scholar]
  31. Lim, C. R., Kimata, Y., Oka, M., Nomaguchi, M. K. & Kohno, K. ( 1995; ). Thermosensitivity of green fluorescent protein fluorescence utilized to reveal novel nuclear-like compartments in a mutant nucleoporin NSP1. J Biochem 118, 13–17.
    [Google Scholar]
  32. Loomis, W. F., Shauslsky, G. & Wang, N. ( 1997; ). Histidine kinases in signal transduction pathways of eukaryotes. J Cell Sci 110, 1141–1145.
    [Google Scholar]
  33. Pappas, K. M., Weingart, C. L. & Winans, S. C. ( 2004; ). Chemical communication in proteobacteria: biochemical and structural studies of signal synthases and receptors required for intercellular signaling. Mol Microbiol 53, 755–769.[CrossRef]
    [Google Scholar]
  34. Perego, M. ( 1997; ). A peptide export-import control circuit modulating bacterial development regulates protein phosphates of the phosphorelay. Proc Natl Acad Sci U S A 94, 8612–8617.[CrossRef]
    [Google Scholar]
  35. Qiao, M. & Saris, P. E. J. ( 1996; ). Evidence for the role of NisT in transport of the lantibiotic nisin produced by Lactococcus lactis N8. FEMS Microbiol Lett 144, 89–93.[CrossRef]
    [Google Scholar]
  36. Qiao, M., Ye, S., Koponen, O., Ra, R., Usabiaga, M., Immonen, T. & Saris, P. E. J. ( 1996; ). Regulation of the nisin operons in Lactococcus lactis N8. J Appl Bacteriol 80, 626–634.[CrossRef]
    [Google Scholar]
  37. Ra, R. & Saris, P. E. J. ( 1995; ). Characterization of prokaryotic mRNAs by RT-PCR. BioTechniques 18, 792–795.
    [Google Scholar]
  38. Ra, R., Qiao, M., Immonen, T., Pujana, I. & Saris, P. E. J. ( 1996; ). Genes responsible for nisin synthesis, regulation and immunity from a regulon of two operons and are induced by nisin in Lactococcus lactis N8. Microbiology 142, 1281–1288.[CrossRef]
    [Google Scholar]
  39. Reunanen, J. & Saris, P. E. J. ( 2003; ). Microplate bioassay for nisin in foods, based on nisin-induced green fluorescent protein fluorescence. Appl Environ Microbiol 69, 4214–4218.[CrossRef]
    [Google Scholar]
  40. Saris, P. E. J., Immonen, T., Reis, M. & Sahl, H. G. ( 1996; ). Immunity to lantibiotics. Antonie Van Leeuwenhoek 69, 151–159.[CrossRef]
    [Google Scholar]
  41. Schauder, S. & Bassler, B. ( 2001; ). The languages of bacteria. Genes Dev 15, 1468–1480.[CrossRef]
    [Google Scholar]
  42. Sibakov, M., Koivula, T., von Wright, A. & Palva, I. ( 1991; ). Secretion of TEM β-lactamase with signal sequences isolated from the chromosome of Lactococcus lactis subsp. lactis. Appl Environ Microbiol 57, 341–348.
    [Google Scholar]
  43. Stein, T., Heinemann, S., Solovieva, I. & Entian, K. D. ( 2003; ). Function of Lactococcus lactis nisin immunity genes nisI and nisFEG after coordinated expression in the surrogate host Bacillus subtilis. J Biol Chem 278, 89–94.
    [Google Scholar]
  44. Stock, A. M., Robinson, V. L. & Goudreau, P. N. ( 2000; ). Two-component signal transduction. Annu Rev Biochem 69, 183–215.[CrossRef]
    [Google Scholar]
  45. van den Hooven, H. W., Doeland, C. C., van de Kamp, M., Konings, R. N., Hilbers, C. W. & van de Ven, F. J. M. ( 1996; ). Three-dimensional structure of the lantibiotic nisin in the presence of membrane-mimetic micelles of dodecylphosphocholine and of sodium dodecylsulphate. Eur J Biochem 15, 382–393.
    [Google Scholar]
  46. van der Meer, J. R., Polman, J., Beerthuyzen, M. M., Siezen, R. J., Kuipers, O. P. & de Vos, W. M. ( 1993; ). Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing, and nisR, encoding a regulatory protein involved in nisin biosynthesis. J Bacteriol 175, 2578–2588.
    [Google Scholar]
  47. Van Kraaij, C., Breukink, E. Rollema H. S., Siezen, R. J., Demel, R. A., de Kruijff, B. & Kuipers, O. P. ( 1997; ). Influence of charge differences in the C-terminal part of nisin on antimicrobial activity and signalling capacity. Eur J Biochem 247, 114–120.[CrossRef]
    [Google Scholar]
  48. Whitehead, N. A., Barnard, A. M. L., Salter, H., Simpson, N. J. L. & Salmond, G. P. C. ( 2001; ). Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25, 365–404.[CrossRef]
    [Google Scholar]
  49. Wolanin, P. M., Thomason, P. A. & Stock, J. B. ( 2002; ). Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biol 3, 3013.1–3013.8.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28544-0
Loading
/content/journal/micro/10.1099/mic.0.28544-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error