Absence of plasmids encoding adhesion-related proteins in non-insect-transmissible strains of Free

Abstract

In the plant-pathogenic mollicute , spiralin is the major lipoprotein at the cell surface and is thought to be one of the components involved in the interactions of the spiroplasma with its insect vector. With the aim of identifying surface proteins other than spiralin, monoclonal antibodies (mAbs) were produced by immunization of mice with the spiralin-defective mutant GII3-9a2. mAb 10G3 was found to react with several polypeptides of 43–47 and 80–95 kDa, all of which were detected in the detergent phase after Triton X-114 partitioning of proteins. Mass spectrometry (MALDI-TOF) analyses of the two major polypeptides P47 and P80 of GII3-9a2, reacting with mAb 10G3, revealed that P47 was a processed product and represented the C-terminal moiety of P80. Search for sequence homologies revealed that P80 shared strong similarities with the adhesion-related protein P89 (Sarp1) of BR3, and is one (named Scarp4a) of the eight Scarps encoded by the GII-3 genome. The eight genes are carried by plasmids pSci1–5. Western immunoblotting of proteins with mAb 10G3 revealed that, in contrast to the insect-transmissible strain GII-3, the non-insect-transmissible strains ASP-1, R8A2 and 44 did not express Scarps. Southern blot hybridization experiments indicated that these strains possessed no genes, and did not carry plasmids pSci1–5. However, strain GII3-5, lacking pSci5, was still efficiently transmitted, showing that, in the genetic background of GII-3, the pSci5-encoded genes, and in particular , and , are not essential for insect transmission. Whether plasmid-encoded genes are involved in transmission of by its leafhopper vector remains to be determined.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28541-0
2006-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/3/873.html?itemId=/content/journal/micro/10.1099/mic.0.28541-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F, Madden T. L, Schaffer A. A, Zhang J, Zhang Z, Miller W, Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein databases search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. André A, Maucourt M, Moing A, Rolin D, Renaudin J. 2005; Sugar import and phytopathogenicity of Spiroplasma citri : glucose and fructose play distinct roles. Mol Plant Microbe Interact 18:33–42 [CrossRef]
    [Google Scholar]
  3. Ausubel F. M, Brent R, Kingston R. E, Moore D. D, Smith J. A, Seidman J. G, Struhl K. 1995 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  4. Berg M, Melcher U, Fletcher J. 2001; Characterization of Spiroplasma citri adhesion related protein SARP1, which contains a domain of a novel family designated sarpin. Gene 275:57–64 [CrossRef]
    [Google Scholar]
  5. Bordier C. 1981; Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256:1604–1607
    [Google Scholar]
  6. Boutareaud A, Danet J. L, Garnier M, Saillard C. 2004; Disruption of a gene predicted to encode a solute binding protein of an ABC transporter reduces transmission of Spiroplasma citri by the leafhopper Circulifer haematoceps . Appl Environ Microbiol 70:3960–3967 [CrossRef]
    [Google Scholar]
  7. Bové J. M, Renaudin J, Saillard C, Foissac X, Garnier M. 2003; Spiroplasma citri , a plant pathogenic mollicute: relationships with its two hosts, the plant and the leafhopper vector. Annu Rev Phytopathol 41:483–500 [CrossRef]
    [Google Scholar]
  8. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principal of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  9. Castano S, Blaudez D, Desbat B, Dufourcq J, Wroblewski H. 2002; Secondary structure of spiralin in solution, at the air/water interface, and in interaction with lipid monolayers. Biochim Biophys Acta 1562:45–56 [CrossRef]
    [Google Scholar]
  10. Cheng C, Nicolet J, Miserez R, Kuhnert P, Krampe M, Pilloud T, Abdo E.-M, Griot C, Frey J. 1996; Characterization of the gene for an immunodominant 72 kDa lipoprotein of Mycoplasma mycoides subsp. mycoides small colony type. Microbiology 142:3515–3524 [CrossRef]
    [Google Scholar]
  11. Corpet F. 1988; Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890 [CrossRef]
    [Google Scholar]
  12. Davis R. E, Dally E. L, Jomantiene R, Zhao Y, Roe B, Lin S, Shao J. 2005; Cryptic plasmid pSKU146 from the wall-less plant pathogen Spiroplasma kunkelii encodes an adhesin and components of a type IV translocation-related conjugation system. Plasmid 53:179–190 [CrossRef]
    [Google Scholar]
  13. Duret S, Berho N, Danet J. L, Garnier M, Renaudin J. 2003; Spiralin is not essential for helicity, motility, or pathogenicity but is required for efficient transmission of Spiroplasma citri by its leafhopper vector Circulifer haematoceps . Appl Environ Microbiol 69:6225–6234 [CrossRef]
    [Google Scholar]
  14. Fletcher J. 1983; Brittle root of horseradish in Illinois and the distribution of Spiroplasma citri in the United States. Phytopathology 73:354–357 [CrossRef]
    [Google Scholar]
  15. Fletcher J, Wayadande A, Melcher U, Ye F. 1998; The phytopathogenic mollicute-insect vector interface: a closer look. Phytopathology 88:1351–1358 [CrossRef]
    [Google Scholar]
  16. Foissac X, Danet J. L, Saillard C, Whitcomb R. F, Bové J. M. 1996; Experimental infection of plants by spiroplasmas. In Molecular and Diagnostic Procedures in Mycoplasmology vol. 2 pp  385–389 Edited by Razin S., Tully J. G. New York: Academic Press;
    [Google Scholar]
  17. Foissac X, Saillard C, Danet J. L, Gaurivaud P, Paré C, Laigret F, Bové J. M. 1997; Mutagenesis by insertion of transposon Tn 4001 into the genome of Spiroplasma citri : characterization of mutants affected in plant pathogenicity and transmission to the plant by the leafhopper vector Circulifer haematoceps . Mol Plant Microbe Interact 10:454–461 [CrossRef]
    [Google Scholar]
  18. Foissac X, Carle P, Killiny N, Duret-Nurbel S, Bove J. M., Saillard C. 2004; Spiroplasma citri genome contains large plasmids carrying genes putatively involved in DNA transfer and in interaction with the insect vector. Talk 1 in Phytoplasmas and Spiroplasmas . Seminar VI. Fifteenth International Congress of the International Organization for Mycoplasmology (IOM) Athens, Georgia:
    [Google Scholar]
  19. Fos A, Bové J. M, Lallemand J, Saillard C, Vignault J. C, Ali Y, Brun P, Vogel R. 1986; The leafhopper Neoaliturus haematoceps is a vector of Spiroplasma citri in the Mediterranean area. Ann Inst Pasteur Microbiol 137:97–107
    [Google Scholar]
  20. Gaurivaud P, Danet J. L, Laigret F, Garnier M, Bové J. M. 2000; Fructose utilization and pathogenicity of Spiroplasma citri . Mol Plant Microbe Interact 13:1145–1155 [CrossRef]
    [Google Scholar]
  21. Killiny N, Castroviejo M, Saillard C. 2005; Spiroplasma citri spiralin acts in vitro as a lectin binding to glycoproteins from its insect vector Circulifer haematoceps . Phytopathology 95:541–548 [CrossRef]
    [Google Scholar]
  22. Kwon M.-O, Wayadande A. C, Fletcher J. 1999; Spiroplasma citri movement into the intestines and salivary glands of its leafhopper vector, Circulifer tenellus . Phytopathology 89:1144–1151 [CrossRef]
    [Google Scholar]
  23. Lartigue C, Duret S, Garnier M, Renaudin J. 2002; New plasmid vectors for specific gene targeting in Spiroplasma citri . Plasmid 48:149–159 [CrossRef]
    [Google Scholar]
  24. Lee I.-M, Davis R. E, Gundersen-Rindal D. E. 2000; Phytoplasma: phytopathogenic mollicutes. Annu Rev Microbiol 54:221–225 [CrossRef]
    [Google Scholar]
  25. Liu H. Y, Gumpf D. J, Oldfield G. N, Calavan E. C. 1983a; Transmission of Spiroplasma citri by Circulifer tenellus . Phytopathology 73:582–585 [CrossRef]
    [Google Scholar]
  26. Liu H. Y, Gumpf D. J, Oldfield G. N, Calavan E. C. 1983b; The relationship of Spiroplasma citri and Circulifer tenellus . Phytopathology 73:585–590 [CrossRef]
    [Google Scholar]
  27. Moore G. E, Hood D. B. 1993; Modified RPMI 1640 culture medium. In Vitro Cell Dev Biol Anim 29A268
    [Google Scholar]
  28. Nishigawa H, Oshima K, Kakizawa S, Jung H.-Y, Kuboyama T, Miyata S.-I, Ugaki M, Namba S. 2002; A plasmid from a non-insect-transmissible line of a phytoplasma lacks two open reading frames that exist in the plasmid from the wild-type line. Gene 298:195–201 [CrossRef]
    [Google Scholar]
  29. Ozbek E, Miller S. A, Meulia T, Hogenhout S. A. 2003; Infection and replication sites of Spiroplasma kunkelii (Class: Mollicutes) in midgut and malpighian tubules of the leafhopper Dalbulus maidis . J Invertebr Pathol 82:167–175 [CrossRef]
    [Google Scholar]
  30. Pickett M. A, Everson J. S, Pead P. J, Clarke I. N. 2005; The plasmids of Chlamydia trachomatis and Chlamydophila pneumoniae (N16): accurate determination of copy number and the paradoxical effect of plasmid-curing agents. Microbiology 151:893–903 [CrossRef]
    [Google Scholar]
  31. Ravoet A. M, Bazin H. 1990; In Fusion Procedure. pp  88–95 Edited by Bazin H. Boca Raton, FL: CRC Press;
  32. Renaudin J. 2002; Extrachromosomal elements and gene transfer. In Molecular Biology and Pathogenicity of Mycoplasmas pp  347–370 Edited by Razin S., Herrmann R. New York: Kluwer Academic/Plenum Publishers;
    [Google Scholar]
  33. Renaudin J, Lartigue C. 2005; OriC plasmids as gene vectors for mollicutes. In Mycoplasmas: Pathogenesis, Molecular Biology, and Emerging Strategies for Control pp  3–30 Edited by Blanchard A., Browning G. Norwich, UK: Horizon Scientific Press;
    [Google Scholar]
  34. Saglio P, Lhospital M, Laflèche D, Dupont G, Bové J. M, Tully J. G, Freundt E. A. 1973; Spiroplasma citri gen. and sp. n. a mycoplasma-like organism associated with “stubborn” disease of citrus. Int J Syst Bacteriol 23:191–204 [CrossRef]
    [Google Scholar]
  35. Sambrook J, Fritsch E. F, Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Seemüller E, Garnier M, Schneider B. 2002; Mycoplasmas of plants and insects. In Molecular Biology and Pathogenicity of Mycoplasmas pp  91–115 Edited by Razin S., Herrmann R. New York: Kluwer Academic/Plenum Publishers;
    [Google Scholar]
  37. Stamburski C, Renaudin J, Bové J. M. 1991; First step toward a virus-derived vector for gene cloning and expression in spiroplasmas, organisms which read UGA as a tryptophan codon: synthesis of chloramphenicol acetyltransferase in Spiroplasma citri . J Bacteriol 173:2225–2230
    [Google Scholar]
  38. Townsend R, Markham P. G, Plaskitt K. A, Daniels M. J. 1977; Isolation and characterization of a non-helical strain of Spiroplasma citri . J Gen Microbiol 100:15–21 [CrossRef]
    [Google Scholar]
  39. Vignault J. C, Bové J. M, Saillard C. 17 other authors 1980; Mise en culture de spiroplasmes à partir de matériel végétal et d'insectes provenant de pays circum méditerranéens et du Proche Orient. C R Acad Sci Ser III 290:775–780
    [Google Scholar]
  40. Whitcomb R. F. 1983; Culture media for spiroplasmas. Methods Mycoplasmol 1:147–159
    [Google Scholar]
  41. Yu J, Wayadande A. C, Fletcher J. 2000; Spiroplasma citri surface protein P89 implicated in adhesion to cells of the vector Circulifer tenellus . Phytopathology 90:716–722 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28541-0
Loading
/content/journal/micro/10.1099/mic.0.28541-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed