1887

Abstract

The soil bacterium frequently encounters a reduction in temperature in its natural habitats. Here, a combined transcriptomic and proteomic approach has been used to analyse the adaptational responses of to low temperature. Propagation of in minimal medium at 15 °C triggered the induction of 279 genes and the repression of 301 genes in comparison to cells grown at 37 °C. The analysis thus revealed profound adjustments in the overall gene expression profile in chill-adapted cells. Important transcriptional changes in low-temperature-grown cells comprise the induction of the SigB-controlled general stress regulon, the induction of parts of the early sporulation regulons (SigF, SigE and SigG) and the induction of a regulatory circuit (RapA/PhrA and Opp) that is involved in the fine-tuning of the phosphorylation status of the Spo0A response regulator. The analysis of chill-stress-repressed genes revealed reductions in major catabolic (glycolysis, oxidative phosphorylation, ATP synthesis) and anabolic routes (biosynthesis of purines, pyrimidines, haem and fatty acids) that likely reflect the slower growth rates at low temperature. Low-temperature repression of part of the SigW regulon and of many genes with predicted functions in chemotaxis and motility was also noted. The proteome analysis of chill-adapted cells indicates a major contribution of post-transcriptional regulation phenomena in adaptation to low temperature. Comparative analysis of the previously reported transcriptional responses of cold-shocked cells with this data revealed that cold shock and growth in the cold constitute physiologically distinct phases of the adaptation of to low temperature.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28530-0
2006-03-01
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/3/831.html?itemId=/content/journal/micro/10.1099/mic.0.28530-0&mimeType=html&fmt=ahah

References

  1. Aguilar P. S, Cronan J. E, de Mendoza D Jr. 1998; A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. J Bacteriol 180:2194–2200
    [Google Scholar]
  2. Aguilar P. S, Lopez P, De Mendoza D. 1999; Transcriptional control of the low-temperature-inducible des gene, encoding the Δ5 desaturase of Bacillus subtilis . J Bacteriol 181:7028–7033
    [Google Scholar]
  3. Aguilar P. S, Hernandez-Arriaga A. M, Cybulski L. E, Erazo A. C, de Mendoza D. 2001; Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis . EMBO J 20:1681–1691 [CrossRef]
    [Google Scholar]
  4. Aizawa S. I, Zhulin I. B, Marquez-Magana L. M, Ordal G. W. 2002; Chemotaxis and motility. In Bacillus subtilis and its Closest Relatives: from Genes to Cells pp  437–452 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Amati G, Bisicchia P, Galizzi A. 2004; DegU-P represses expression of the motility fla - che operon in Bacillus subtilis . J Bacteriol 186:6003–6014 [CrossRef]
    [Google Scholar]
  6. Amaya E, Khvorova A, Piggot P. J. 2001; Analysis of promoter recognition in vivo directed by σ [sup]F[/sup] of Bacillus subtilis by using random-sequence oligonucleotides. J Bacteriol 183:3623–3630 [CrossRef]
    [Google Scholar]
  7. Beckering C. L, Steil L, Weber M. H, Völker U, Marahiel M. A. 2002; Genomewide transcriptional analysis of the cold shock response in Bacillus subtilis . J Bacteriol 184:6395–6402 [CrossRef]
    [Google Scholar]
  8. Benson A. K, Haldenwang W. G. 1993; The σ [sup]B[/sup] dependent promoter of the Bacillus subtilis sigB operon is induced by heat shock. J Bacteriol 175:1929–1935
    [Google Scholar]
  9. Berka R. M, Hahn J, Albano M, Draskovic I, Persuh M, Cui X, Sloma A, Widner W, Dubnau D. 2002; Microarray analysis of the Bacillus subtilis K-state: genome-wide expression changes dependent on ComK. Mol Microbiol 43:1331–1345 [CrossRef]
    [Google Scholar]
  10. Bongiorni C, Ishikawa S, Stephenson S, Ogasawara N, Perego M. 2005; Synergistic regulation of competence development in Bacillus subtilis by two Rap-Phr systems. J Bacteriol 187:4353–4361 [CrossRef]
    [Google Scholar]
  11. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  12. Bremer E. 2002; Adaptation to changing osmolarity. In Bacillus subtilis and its Closest Relatives: from Genes to Cells pp  385–391 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Brigulla M, Hoffmann T, Krisp A, Völker A, Bremer E, Völker U. 2003; Chill induction of the SigB-dependent general stress response in Bacillus subtilis and its contribution to low-temperature adaptation. J Bacteriol 185:4305–4314 [CrossRef]
    [Google Scholar]
  14. Cao M, Kobel P. A, Morshedi M. M, Wu M. F, Paddon C, Helmann J. D. 2002; Defining the Bacillus subtilis σ [sup]W[/sup] regulon: a comparative analysis of promoter consensus search, run-off transcription/macroarray analysis (ROMA), and transcriptional profiling approaches. J Mol Biol 316:443–457 [CrossRef]
    [Google Scholar]
  15. Core L, Perego M. 2003; TPR-mediated interaction of RapC with ComA inhibits response regulator-DNA binding for competence development in Bacillus subtilis . Mol Microbiol 49:1509–1522 [CrossRef]
    [Google Scholar]
  16. Dammel C. S, Noller H. F. 1995; Suppression of a cold-sensitive mutation in 16S rRNA by overexpression of a novel ribosome-binding factor, RbfA. Genes Dev 9:626–637 [CrossRef]
    [Google Scholar]
  17. Eichenberger P, Jensen S. T, Conlon E. M. 8 other authors 2003; The σ [sup]E[/sup] regulon and the identification of additional sporulation genes in Bacillus subtilis . J Mol Biol 327:945–972 [CrossRef]
    [Google Scholar]
  18. Eichenberger P, Fujita M, Jensen S. T. 8 other authors 2004; The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis . PLoS Biol 2:E328 [CrossRef]
    [Google Scholar]
  19. Eymann C, Dreisbach A, Albrecht D. 10 other authors 2004; A comprehensive proteome map of growing Bacillus subtilis cells. Proteomics 4:2849–2876 [CrossRef]
    [Google Scholar]
  20. Fabret C, Feher V. A, Hoch J. A. 1999; Two-component signal transduction in Bacillus subtilis : how one organism sees its world. J Bacteriol 181:1975–1983
    [Google Scholar]
  21. Fawcett P, Eichenberger P, Losick R, Youngman P. 2000; The transcriptional profile of early to middle sporulation in Bacillus subtilis . Proc Natl Acad Sci U S A 97:8063–8068 [CrossRef]
    [Google Scholar]
  22. Feucht A, Evans L, Errington J. 2003; Identification of sporulation genes by genome-wide analysis of the σ [sup]E[/sup] regulon of Bacillus subtilis . Microbiology 149:3023–3034 [CrossRef]
    [Google Scholar]
  23. Graumann P, Marahiel M. A. 1996; Some like it cold: response of microorganisms to cold shock. Arch Microbiol 166:293–300 [CrossRef]
    [Google Scholar]
  24. Graumann P, Schröder K, Schmid R, Marahiel M. A. 1996; Cold shock stress-induced proteins in Bacillus subtilis . J Bacteriol 178:4611–4619
    [Google Scholar]
  25. Graumann P, Wendrich T. M, Weber M. H. W, Schröder K, Marahiel A. 1997; A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol Microbiol 25:741–756 [CrossRef]
    [Google Scholar]
  26. Harwood C. R, Archibald A. R. 1990; Growth, maintenance and general techniques. In Molecular Biological Methods for Bacillus pp  1–26 Edited by Harwood C. R., Cutting S. M. Chichester: Wiley;
    [Google Scholar]
  27. Harwood C. R, Cutting S. M. 1990 Molecular Biological Methods for Bacillus Chichester: Wiley;
    [Google Scholar]
  28. Hauser N. C, Vingron M, Scheideler M, Krems B, Hellmuth K, Entian K. D, Hoheisel J. D. 1998; Transcriptional profiling on all open reading frames of Saccharomyces cerevisiae . Yeast 14:1209–1221 [CrossRef]
    [Google Scholar]
  29. Hecker M, Völker U. 2001; General stress response of Bacillus subtilis and other bacteria. Adv Microb Physiol 44:35–91
    [Google Scholar]
  30. Hecker M, Schumann W, Völker U. 1996; Heat-shock and general stress response in Bacillus subtilis . Mol Microbiol 19:417–428 [CrossRef]
    [Google Scholar]
  31. Helmann J. D, Moran C. P. 2002; RNA polymerase and sigma factors. In Bacillus subtilis and its Closest Relatives: from Genes to Cells pp  289–312 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  32. Helmann J. D, Wu M. F, Kobel P. A, Gamo F. J, Wilson M, Morshedi M. M, Navre M, Paddon C. 2001; Global transcriptional response of Bacillus subtilis to heat shock. J Bacteriol 183:7318–7328 [CrossRef]
    [Google Scholar]
  33. Hoch J. A. 1995; Control of cellular development in sporulating bacteria by the phosphorelay two-component signal transduction system. In Two-Component Signal Transduction pp  129–144 Edited by Hoch J. A., Silhavy T. J. Washington DC: American Society for Microbiology;
    [Google Scholar]
  34. Holtmann G, Bremer E. 2004; Thermoprotection of Bacillus subtilis by exogenously provided glycine betaine and structurally related compatible solutes: involvement of the Opu transporters. J Bacteriol 186:1683–1693 [CrossRef]
    [Google Scholar]
  35. Holtmann G, Bakker E. P, Uozumi N, Bremer E. 2003; KtrAB and KtrCD: two K[sup]+[/sup] uptake systems in Bacillus subtilis and their role in the adaptation to hypertonicity. J Bacteriol 185:1289–1298 [CrossRef]
    [Google Scholar]
  36. Holtmann G, Brigulla M, Steil L, Schütz A, Barnekow K, Völker U, Bremer E. 2004; RsbV-independent induction of the SigB-dependent general stress regulon of Bacillus subtilis during growth at high temperature. J Bacteriol 186:6150–6158 [CrossRef]
    [Google Scholar]
  37. Honjo M, Nakayama A, Fukazawa K, Kawamura K, Ando K, Hori M, Furutani Y. 1990; A novel Bacillus subtilis gene involved in negative control of sporulation and degradative-enzyme production. J Bacteriol 172:1783–1790
    [Google Scholar]
  38. Höper D, Völker U, Hecker M. 2005; Comprehensive characterization of the contribution of individual SigB-dependent general stress genes to stress resistance of Bacillus subtilis . J Bacteriol 187:2810–2826 [CrossRef]
    [Google Scholar]
  39. Huang X, Fredrick K. L, Helmann J. D. 1998; Promoter recognition by Bacillus subtilis σ [sup]W[/sup]: autoregulation and partial overlap with the σ [sup]X[/sup] regulon. J Bacteriol 180:3765–3770
    [Google Scholar]
  40. Igo M, Lampe M, Ray C, Schafer W, Moran C. P, Losick R Jr. 1987; Genetic studies of a secondary RNA polymerase sigma factor in Bacillus subtilis . J Bacteriol 169:3464–3469
    [Google Scholar]
  41. Jiang M, Grau R, Perego M. 2000; Differential processing of propeptide inhibitors of Rap phosphatases in Bacillus subtilis . J Bacteriol 182:303–310 [CrossRef]
    [Google Scholar]
  42. Jones P. G, Mitta M, Kim Y, Jiang W. N, Inouye M. 1996; Cold shock induces a major ribosomal-associated protein that unwinds double-stranded RNA in Escherichia coli . Proc Natl Acad Sci U S A 93:76–80 [CrossRef]
    [Google Scholar]
  43. Kaan T, Jürgen B, Schweder T. 1999; Regulation of the expression of the cold shock proteins CspB and CspC in Bacillus subtilis . Mol Gen Genet 262:351–354 [CrossRef]
    [Google Scholar]
  44. Kaan T, Homuth G, Mäder U, Bandow J, Schweder T. 2002; Genome-wide transcriptional profiling of the Bacillus subtilis cold-shock response. Microbiology 148:3441–3455
    [Google Scholar]
  45. Kalman S, Duncan M. L, Thomas S. M, Price C. W. 1990; Similar organization of the sigB and spoIIA operons encoding alternate sigma factors of Bacillus subtilis RNA polymerase. J Bacteriol 172:5575–5585
    [Google Scholar]
  46. Kempf B, Bremer E. 1995; OpuA, an osmotically regulated binding protein-dependent transport system for the osmoprotectant glycine betaine in Bacillus subtilis . J Biol Chem 270:16701–16713 [CrossRef]
    [Google Scholar]
  47. Klein W, Weber M. H. W, Marahiel M. A. 1999; Cold shock response of Bacillus subtilis : isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures. J Bacteriol 181:5341–5349
    [Google Scholar]
  48. Kunst F, Ogasawara N, Moszer I. & 148 other authors; 1997; The complete genome sequence of the Gram-positive bacterium Bacillus subtilis . Nature 390:249–256 [CrossRef]
    [Google Scholar]
  49. Liu S, Graham J. E, Bigelow L, Morse P. D, Wilkinson B. J 2nd. 2002; Identification of Listeria monocytogenes genes expressed in response to growth at low temperature. Appl Environ Microbiol 68:1697–1705 [CrossRef]
    [Google Scholar]
  50. Mäder U, Antelmann H, Buder T, Dahl M. K, Hecker M, Homuth G. 2002; Bacillus subtilis functional genomics: genome-wide analysis of the DegS-DegU regulon by transcriptomics and proteomics. Mol Genet Genomics 268:455–467 [CrossRef]
    [Google Scholar]
  51. Mansilla M. C, Cybulski L. E, Albanesi D, de Mendoza D. 2004; Control of membrane lipid fluidity by molecular thermosensors. J Bacteriol 186:6681–6688 [CrossRef]
    [Google Scholar]
  52. Mendez M. B, Orsaria L. M, Philippe V, Pedrido M. E, Grau R. R. 2004; Novel roles of the master transcription factors Spo0A and σ [sup]B[/sup] for survival and sporulation of Bacillus subtilis at low growth temperature. J Bacteriol 186:989–1000 [CrossRef]
    [Google Scholar]
  53. Molle V, Fujita M, Jensen S. T, Eichenberger P, Gonzalez-Pastor J. E, Liu J. S, Losick R. 2003a; The Spo0A regulon of Bacillus subtilis . Mol Microbiol 50:1683–1701 [CrossRef]
    [Google Scholar]
  54. Molle V, Nakaura Y, Shivers R. P, Yamaguchi H, Losick R, Fujita Y, Sonenshein A. L. 2003b; Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. J Bacteriol 185:1911–1922 [CrossRef]
    [Google Scholar]
  55. Moszer I, Jones L. M, Moreira S, Fabry C, Danchin A. 2002; SubtiList: the reference database for the Bacillus subtilis genome. Nucleic Acids Res 30:62–65 [CrossRef]
    [Google Scholar]
  56. Nichols D. S, Nichols P. D, McMeekin T. A. 1995; Ecology and physiology of psychrophilic bacteria from Antarctic saline lakes and ice-sea. Sci Prog 78:311–348
    [Google Scholar]
  57. Nickel M, Homuth G, Bohnisch C, Mader U, Schweder T. 2004; Cold induction of the Bacillus subtilis bkd operon is mediated by increased mRNA stability. Mol Genet Genomics 272:98–107
    [Google Scholar]
  58. Ogura M, Yamaguchi H, Yoshida K, Fujita Y, Tanaka T. 2001; DNA microarray analysis of Bacillus subtilis DegU, ComA and PhoP regulons: an approach to comprehensive analysis of B. subtilis two-component regulatory systems. Nucleic Acids Res 29:3804–3813 [CrossRef]
    [Google Scholar]
  59. Ogura M, Shimane K, Asai K, Ogasawara N, Tanaka T. 2003; Binding of response regulator DegU to the aprE promoter is inhibited by RapG, which is counteracted by extracellular PhrG in Bacillus subtilis . Mol Microbiol 49:1685–1697 [CrossRef]
    [Google Scholar]
  60. Perego M. 1997; A peptide export-import control circuit modulating bacterial development regulates protein phosphatases of the phosphorelay. Proc Natl Acad Sci U S A 94:8612–8617 [CrossRef]
    [Google Scholar]
  61. Perego M. 1999; Self-signalling by Phr peptides modulates Bacillus subtilis development. In Cell-Cell Signalling in Bacteria pp  243–258 Edited by Dunny G. M., Winans S. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  62. Perego M, Higgins C. F, Pearce S. R, Gallagher M. P, Hoch J. A. 1991; The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation. Mol Microbiol 5:173–185 [CrossRef]
    [Google Scholar]
  63. Perego M, Hanstein C, Welsh K. M, Djavakhishvili T, Glaser P, Hoch J. A. 1994; Multiple protein-aspartate phosphatases provide a mechanism for the integration of diverse signals in the control of development in B. subtilis . Cell 79:1047–1055 [CrossRef]
    [Google Scholar]
  64. Perego M, Glaser P, Hoch J. A. 1996; Aspartyl-phosphate phosphatases deactivate the response regulator components of the sporulation signal transduction system in Bacillus subtilis . Mol Microbiol 19:1151–1157 [CrossRef]
    [Google Scholar]
  65. Petersohn A, Brigulla M, Haas S, Hoheisel J. D, Völker U, Hecker M. 2001; Global analysis of the general stress response of Bacillus subtilis . J Bacteriol 183:5617–5631 [CrossRef]
    [Google Scholar]
  66. Price C. W. 2002; General stress response. In Bacillus subtilis and its Closest Relatives: from Genes to Cells pp  369–384 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  67. Price C. W, Fawcett P, Ceremonie H, Su N, Murphy C. K, Youngman P. 2001; Genome-wide analysis of the general stress response in Bacillus subtilis . Mol Microbiol 41:757–774
    [Google Scholar]
  68. Schobel S, Zellmeier S, Schumann W, Wiegert T. 2004; The Bacillus subtilis σ [sup]W[/sup] anti-sigma factor RsiW is degraded by intramembrane proteolysis through YluC. Mol Microbiol 52:1091–1105 [CrossRef]
    [Google Scholar]
  69. Schumann W, Hecker M, Msadek T. 2002; Regulation and function of heat-inducible genes in Bacillus subtilis. In Bacillus subtilis and its Closest Relatives: from Genes to Cells pp  359–368 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  70. Sonenshein A. L. 2000; Bacterial sporulation: a response to environmental signals. In Bacterial Stress Responses pp  199–215 Edited by Storz G., Hengge-Aronis R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  71. Steil L, Hoffmann T, Budde I, Völker U, Bremer E. 2003; Genome-wide transcriptional profiling analysis of adaptation of Bacillus subtilis to high salinity. J Bacteriol 185:6358–6370 [CrossRef]
    [Google Scholar]
  72. Steil L, Serrano M, Henriques A. O, Völker U. 2005; Genome-wide analysis of temporally regulated and compartment-specific gene expression in sporulating cells of Bacillus subtilis . Microbiology 151:399–420 [CrossRef]
    [Google Scholar]
  73. Stragier P, Losick R. 1996; Molecular genetics of sporulation in Bacillus subtilis . Annu Rev Genet 30:297–341 [CrossRef]
    [Google Scholar]
  74. Stragier P, Bonamy C, Karmazyn-Campelli C. 1988; Processing of a sporulation sigma factor in Bacillus subtilis : how morphological structure could control gene expression. Cell 52:697–704 [CrossRef]
    [Google Scholar]
  75. Völker U, Engelmann S, Maul B, Riethdorf S, Völker A, Schmid R, Mach H, Hecker M. 1994; Analysis of the induction of general stress proteins of Bacillus subtilis . Microbiology 140:741–752 [CrossRef]
    [Google Scholar]
  76. Völker U, Maul B, Hecker M. 1999; Expression of the σ [sup]B[/sup]-dependent general stress regulon confers multiple stress resistance in Bacillus subtilis . J Bacteriol 181:3942–3948
    [Google Scholar]
  77. Weber M. H, Marahiel M. A. 2002; Coping with the cold: the cold shock response in the Gram-positive soil bacterium Bacillus subtilis . Philos Trans R Soc Lond Biol Sci 357:895–907 [CrossRef]
    [Google Scholar]
  78. Weber M. H, Klein W, Müller L, Niess U. M, Marahiel M. A. 2001a; Role of the Bacillus subtilis fatty acid desaturase in membrane adaptation during cold shock. Mol Microbiol 39:1321–1329 [CrossRef]
    [Google Scholar]
  79. Weber M. H, Volkov A. V, Fricke I, Marahiel M. A, Graumann P. L. 2001b; Localization of cold shock proteins to cytosolic spaces surrounding nucleoids in Bacillus subtilis depends on active transcription. J Bacteriol 183:6435–6443 [CrossRef]
    [Google Scholar]
  80. Weber M. H, Marahiel M. A. 2003; Bacterial cold shock responses. Sci Prog 86:9–75 [CrossRef]
    [Google Scholar]
  81. Wiegert T, Homuth G, Versteeg S, Schumann W. 2001; Alkaline shock induces the Bacillus subtilis σ [sup]W[/sup] regulon. Mol Microbiol 41:59–71 [CrossRef]
    [Google Scholar]
  82. Wipat A, Harwood C. R. 1999; The Bacillus subtilis genome sequence: the molecular blueprint of a soil bacterium. FEMS Microbiol Ecol 28:1–9 [CrossRef]
    [Google Scholar]
  83. Yoshida K. I, Fujita Y, Ehrlich S. D. 2000; An operon for a putative ATP-binding cassette transport system involved in acetoin utilization of Bacillus subtilis . J Bacteriol 182:5454–5461 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.28530-0
Loading
/content/journal/micro/10.1099/mic.0.28530-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF

Supplementary material 5

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error