1887

Abstract

The role of cytochrome , encoded by , and cytochrome , encoded by , in electron transfer to the nitrite reductase of 2.4.3 was investigated using both and approaches. Both and were isolated, sequenced and insertionally inactivated in strain 2.4.3. Deletion of either gene alone had no apparent effect on the ability of to reduce nitrite. In a double mutant, nitrite reduction was largely inhibited. However, the expression of the nitrite reductase gene from a heterologous promoter substantially restored nitrite reductase activity in the double mutant. Using purified protein, a turnover number of 5 s was observed for the oxidation of cytochrome by nitrite reductase. In contrast, oxidation of only resulted in a turnover of ∼0·1 s. The turnover experiments indicate that is a major electron donor to nitrite reductase but is probably not. Taken together, these results suggest that there is likely an unidentified electron donor, in addition to , that transfers electrons to nitrite reductase, and that the decreased nitrite reductase activity observed in the double mutant probably results from a change in expression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28524-0
2006-05-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/5/1479.html?itemId=/content/journal/micro/10.1099/mic.0.28524-0&mimeType=html&fmt=ahah

References

  1. Bartnikas, T. B., Wang, Y., Bobo, T., Veselov, A., Scholes, C. P. & Shapleigh, J. P. ( 2002; ). Characterization of a member of the NnrR regulon in Rhodobacter sphaeroides 2.4.3 encoding a heme-copper protein. Microbiol 148, 825–833.
    [Google Scholar]
  2. Brandner, J. P., Stabb, E. V., Temme, R. & Donohue, T. J. ( 1991; ). Regions of Rhodobacter sphaeroides cytochrome c 2 required for export, heme attachment, and function. J Bacteriol 173, 3958–3965.
    [Google Scholar]
  3. Daldal, F., Cheng, S., Applebaum, J., Davidson, E. & Prince, R. ( 1986; ). Cytochrome c 2 is not essential for photosynthetic growth of Rhodopseudomonas capsulata. Proc Natl Acad Sci U S A 83, 2012–2016.[CrossRef]
    [Google Scholar]
  4. Daldal, F., Mandaci, S., Winerstein, C., Myllykallio, H., Duyck, K. & Zannoni, D. ( 2001; ). Mobile cytochrome c 2 and membrane-anchored cytochrome c y are both efficient electron donors to the cbb 3- and aa 3- type cytochrome c oxidases during respiratory growth of Rhodobacter sphaeroides. J Bacteriol 183, 2013–2024.[CrossRef]
    [Google Scholar]
  5. Donohue, T. J., McEwan, A. G. & Kaplan, S. ( 1986; ). Cloning, DNA sequence, and expression of the Rhodobacter sphaeroides cytochrome c 2 gene. J Bacteriol 168, 962–972.
    [Google Scholar]
  6. Donohue, T. J., McEwan, A. G., van Doren, S., Crofts, A. R. & Kaplan, S. ( 1988; ). Phenotypic and genetic characterization of cytochrome c 2 deficient mutants of Rhodobacter sphaeroides. Biochemistry 27, 1918–1925.[CrossRef]
    [Google Scholar]
  7. Drosou, V., Reincke, B., Schneider, M. & Ludwig, B. ( 2002; ). Specificity of the interaction between the Paracoccus denitrificans oxidase and its substrate cytochrome c: comparing the mitochondrial to the homologous bacterial cytochrome c(552), and its truncated and site-directed mutants. Biochemistry 41, 10629–10634.[CrossRef]
    [Google Scholar]
  8. Godden, J. W., Turley, S., Teller, D. C., Adman, E. T., Liu, M. Y., Payne, W. J. & Legall, J. ( 1991; ). The 2·3 angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes. Science 253, 438–442.[CrossRef]
    [Google Scholar]
  9. Hall, J., Zha, X. H., Yu, L., Yu, C. A. & Millett, F. ( 1989; ). Role of specific lysine residues in the reaction of Rhodobacter sphaeroides cytochrome c 2 with the cytochrome bc 1 complex. Biochemistry 28, 2568–2571.[CrossRef]
    [Google Scholar]
  10. Jain, R. & Shapleigh, J. P. ( 2001; ). Characterization of nirV and a gene encoding a novel pseudoazurin in Rhodobacter sphaeroides 2.4.3. Microbiol 147, 2505–2515.
    [Google Scholar]
  11. Jenney, F. E. & Daldal, F. ( 1993; ). A novel membrane-associated c-type cytochrome, cyt c Y can mediate the photosynthetic growth of Rhodobacter capsulatus and Rhodobacter sphaeroides. EMBO J 12, 1283–1292.
    [Google Scholar]
  12. Jensen, P., Aasa, R. & Malmstrom, B. G. ( 1981; ). Electron redistribution in cytochrome-c oxidase during freezing under turnover conditions. FEBS Lett 125, 161–164.[CrossRef]
    [Google Scholar]
  13. Keen, N. T., Tamaki, S., Kobayashi, D. & Trollinger, D. ( 1988; ). Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70, 191–197.[CrossRef]
    [Google Scholar]
  14. Laratta, W. P., Choi, P. S., Tosques, I. E. & Shapleigh, J. P. ( 2002; ). Involvement of the PrrB/PrrA two-component system in nitrite respiration in Rhodobacter sphaeroides 2.4.3: evidence for transcriptional regulation. J Bacteriol 184, 3521–3529.[CrossRef]
    [Google Scholar]
  15. Leuking, D. R., Fraley, R. T. & Kaplan, S. ( 1978; ). Intracytoplasmic membrane synthesis in synchronous cell populations of Rhodopseudomonas sphaeroides. J Biol Chem 253, 451–457.
    [Google Scholar]
  16. Mackenzie, C., Choudhary, M., Larimer, F. W. & 11 other authors ( 2001; ). The home stretch, a first analysis of the nearly completed genome of Rhodobacter sphaeroides 2.4.1. Photosyn Res 70, 19–41.[CrossRef]
    [Google Scholar]
  17. Maniatis, T., Fritsch, E. F. & Sambrook, J. ( 1982; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  18. Meyer, T. & Cusanovich, M. ( 1985; ). Soluble cytochrome composition of the purple phototrophic bacterium, Rhodopseudomonas sphaeroides ATCC 17023. Biochim Biophys Acta 807, 308–319.[CrossRef]
    [Google Scholar]
  19. Michalski, W. P. & Nicholas, D. J. D. ( 1985; ). Molecular characterization of a copper-containing nitrite reductase from Rhodopseudomonas sphaeroides forma sp. denitrificans. Biochim Biophys Acta 828, 130–137.[CrossRef]
    [Google Scholar]
  20. Michalski, W. & Nicholas, D. J. D. ( 1988; ). Identification of two new denitrifying strains of Rhodobacter sphaeroides. FEMS Microbiol Lett 52, 239–244.[CrossRef]
    [Google Scholar]
  21. Moir, J. W. B. & Ferguson, S. J. ( 1994; ). Properties of a Paracoccus denitrificans mutant deleted in cytochrome c550 indicate that a copper protein can substitute for this cytochrome in electron transport to nitrite, nitric oxide and nitrous oxide. Microbiol 140, 389–397.[CrossRef]
    [Google Scholar]
  22. Moir, J. W., Baratta, D., Richardson, D. J. & Ferguson, S. J. ( 1993; ). The purification of a cd 1-type nitrite reductase from, and the absence of a copper-type nitrite reductase from, the aerobic denitrifier Thiosphaera pantotropha; the role of pseudoazurin as an electron donor. Eur J Biochem 212, 377–385.[CrossRef]
    [Google Scholar]
  23. Mouncey, N. J., Gak, E., Choudhary, M., Oh, J. & Kaplan, S. ( 2000; ). Respiratory pathways of Rhodobacter sphaeroides 2.4.1T: identification and characterization of genes encoding quinol oxidases. FEMS Microbiol Lett 192, 205–210.[CrossRef]
    [Google Scholar]
  24. Myllykallio, H., Jenney, F. E., Moomaw, C. R., Slaughter, C. A. & Daldal, F. ( 1997; ). Cytochrome c y of Rhodobacter capsulatus is attached to the cytoplasmic membrane by an uncleaved signal seguence-like anchor. J Bacteriol 179, 2623–2631.
    [Google Scholar]
  25. Myllykallio, H., Zannoni, D. & Daldal, F. ( 1999; ). The membrane-attached electron carrier cytochrome c y from Rhodobacter sphaeroides is functional in respiratory but not in photosynthetic electron transfer. Proc Natl Acad Sci U S A 96, 4348–4353.[CrossRef]
    [Google Scholar]
  26. Oh, J. I. & Kaplan, S. ( 1999; ). The cbb 3 terminal oxidase of Rhodobacter sphaeroides 2.4.1: structural and functional implications for the regulation of spectral complex formation. Biochemistry 38, 2688–2696.[CrossRef]
    [Google Scholar]
  27. Oh, J. I. & Kaplan, S. ( 2000; ). Redox signaling: globalization of gene expression. EMBO J 19, 4237–4247.[CrossRef]
    [Google Scholar]
  28. Oh, J. I. & Kaplan, S. ( 2001; ). Generalized approach to the regulation and integration of gene expression. Mol Microbiol 39, 1116–1123.[CrossRef]
    [Google Scholar]
  29. Oh, J., Ko, I. & Kaplan, S. ( 2004; ). Reconstitution of the Rhodobacter sphaeroides cbb 3–PrrBA signal transduction pathway in vitro. Biochemistry 43, 7915–7923.[CrossRef]
    [Google Scholar]
  30. Olesen, K. O., Veselov, A., Zhao, Y., Wang, Y., Danner, B., Scholes, C. P. & Shapleigh, J. P. ( 1998; ). Spectroscopic, kinetic and electrochemical characterization of heterologously expressed wild type and mutant forms of copper-containing nitrite reductase from Rhodobacter sphaeroides 2.4.3. Biochemistry 37, 6086–6094.[CrossRef]
    [Google Scholar]
  31. Pappas, C. T. J., Sram, O. V., Moskvin, P. S. & 7 other authors ( 2004; ). Construction and validation of the Rhodobacter sphaeroides 2.4.1 DNA microarray: transcriptome flexibility at diverse growth modes. J Bacteriol 186, 4748–4758.[CrossRef]
    [Google Scholar]
  32. Parr, S. R., Barber, D. C. G. & Brunori, M. ( 1977; ). The electron transfer reaction between azurin and the cytochrome c oxidase from Pseudomonas aeruginosa. Biochem J 167, 447–455.
    [Google Scholar]
  33. Pearson, I. V., Page, M. D., van Spanning, R. J. & Ferguson, S. J. ( 2003; ). A mutant of Paracoccus denitrificans with disrupted genes coding for cytochrome c 550 and pseudoazurin establishes these two proteins as the in vivo electron donors to cytochrome cd 1 nitrite reductase. J Bacteriol 185, 6308–6315.[CrossRef]
    [Google Scholar]
  34. Prentki, P. & Krisch, H. M. ( 1984; ). In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29, 303–313.[CrossRef]
    [Google Scholar]
  35. Richter, C. D., Allen, J. W., Higham, C. W., Koppenhofer, A., Zajicek, R. S., Watmough, N. J. & Ferguson, S. J. ( 2002; ). Cytochrome cd 1, reductive activation and kinetic analysis of a multifunctional respiratory enzyme. J Biol Chem 277, 3093–3100.[CrossRef]
    [Google Scholar]
  36. Rott, M., Fitch, J., Meyer, T. & Donohue, T. ( 1992; ). Regulation of a cytochrome c 2 isoform in wild-type and cytochrome c 2 mutants strains of Rhodobacter sphaeroides. Arch Biochem Biophys 292, 576–582.[CrossRef]
    [Google Scholar]
  37. Simon, R., Priefer, U. & Pühler, A. ( 1983; ). A broad host range mobilization system for In Vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology 1, 784–791.[CrossRef]
    [Google Scholar]
  38. Stewart, V. & Parales, J., Jr ( 1988; ). Identification and expression of genes narL and narX of the nar (nitrate reductase) locus in Escherichia coli K-12. J Bacteriol 170, 1589–1597.
    [Google Scholar]
  39. Tosques, I. E., Shi, J. & Shapleigh, J. P. ( 1996; ). Cloning and characterization of nnrR, whose product is required for the expression of proteins involved in nitric oxide metabolism in Rhodobacter sphaeroides 2.4.3. J Bacteriol 178, 4958–4964.
    [Google Scholar]
  40. Tosques, I. E., Kwiatkowski, A. V., Shi, J. & Shapleigh, J. P. ( 1997; ). Characterization and regulation of the gene encoding nitrite reductase in Rhodobacter sphaeroides 2.4.3. J Bacteriol 179, 1090–1095.
    [Google Scholar]
  41. Urata, K. & Satoh, T. ( 1984; ). Evidence for cytochrome bc 1 complex involvement in nitrite reduction in a photodenitrifier, Rhodopseudomonas sphaeroides forma sp. denitrificans. FEBS Lett 172, 205–208.[CrossRef]
    [Google Scholar]
  42. Van Spanning, R. J., Wansell, C., Harms, N., Oltmann, L. F. & Stouthamer, A. H. ( 1990; ). Mutagenesis of the gene encoding cytochrome c 550 of Paracoccus denitrificans and analysis of the resultant physiological effects. J Bacteriol 172, 3534–3540.
    [Google Scholar]
  43. Vijgenboom, E., Busch, J. E. & Canters, G. W. ( 1997; ). In vivo studies disprove an obligatory role of azurin in denitrification in Pseudomonas aeruginosa and show that azu expression is under control of RpoS and ANR. Microbiol 143, 2853–2863.[CrossRef]
    [Google Scholar]
  44. Wharton, D. C., Gudat, J. C. & Gibson, Q. H. ( 1973; ). Cytochrome oxidase from Pseudomonas aeruginosa II: reaction with copper protein. Biochim Biophys Acta 292, 611–620.[CrossRef]
    [Google Scholar]
  45. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequence for the M13 mp18 and pUC19 vectors. Gene 33, 103–119.[CrossRef]
    [Google Scholar]
  46. Zhao, Y. D., Lukoyanov, Y., Toropov, K., Wu, J., Shapleigh, C. & Scholes, ( 2002; ). Catalytic function and local proton structure at the type 2 copper of nitrite reductase: the correlation of enzymatic pH dependence, conserved residues, and proton hyperfine structure. Biochemistry 41, 7464–7474.[CrossRef]
    [Google Scholar]
  47. Zumft, W. G. ( 1997; ). Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61, 533–616.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28524-0
Loading
/content/journal/micro/10.1099/mic.0.28524-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error