1887

Abstract

is a versatile, violet pigment (violacein)-producing -proteobacterium, confined to tropical and subtropical regions, dwelling in soil and water, like and . These three bacteria are saprophytes that occasionally become aggressive opportunistic pathogens virulently attacking animals (the first two) and plants (the third). The recent availability of their genome sequences enabled identification in the genome of an ORF (locus no. 1744) that is similar to those of and lectins, PA-IIL and RS-IIL, respectively. A recombinant protein, CV-IIL, encoded by that ORF exhibited fucose>mannose-specific lectin activity resembling PA-IIL. This paper describes production and properties of the native CV-IIL, which, like PA-IIL and RS-IIL, is probably also a quorum-sensing-driven secondary metabolite, appearing concomitantly with violacein. Its formation is repressed in the CV026 mutant of , which lacks endogenous -acylhomoserine lactone. The upstream extragenic sequence of its ORF contains a 20 bp sequence (5′-101–120) with partial similarities to the -box and the related and promoter boxes of quorum-sensing-controlled genes. The lectin level is augmented by addition of trehalose to the medium. The subunit size of CV-IIL (around 11·86 kDa) is similar to those of PA-IIL (11·73 kDa) and RS-IIL (11·60 kDa). Like PA-IIL, in the tetrameric form CV-IIL preferentially agglutinates 1-2 fucosylated H-positive human erythrocytes (regardless of their A, B or O type), as opposed to the O Bombay type, but differs from it in having no interaction with rabbit erythrocytes and in displaying stronger affinity to -galactose than to -fucose. The greater similarity of CV-IIL to PA-IIL than to RS-IIL might be related to the selective adaptation of both and to animal tissues versus the preferential homing of to plants.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28500-0
2006-02-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/2/457.html?itemId=/content/journal/micro/10.1099/mic.0.28500-0&mimeType=html&fmt=ahah

References

  1. Alves de Brito, C. F., Carvalho, C. M. B., Santos, F. R., Gazzinelli, R. T., Oliveira, S. C., Azevedo, V. & Teixeira, S. M. R. ( 2004; ). Chromobacterium violaceum genome: molecular mechanisms associated with pathogenicity. Genet Mol Res 3, 148–161.
    [Google Scholar]
  2. Antonio, R. V. & Creczynski-Pasa, T. B. ( 2004; ). Genetic analysis of violacein biosynthesis by Chromobacterium violaceum. Genet Mol Res 3, 85–91.
    [Google Scholar]
  3. Brazilian National Genome Project Consortium. ( 2003; ). The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc Natl Acad Sci U S A 100, 11660–11665.[CrossRef]
    [Google Scholar]
  4. Chernin, L. S., Winson, M. K., Thompson, J. M., Haran, S., Bycroft, B. W., Chet, I., Williams, P. & Stewart, G. S. ( 1998; ). Chitinolytic activity in Chromobacterium violaceum: substrate analysis and regulation by quorum sensing. J Bacteriol 180, 4435–4441.
    [Google Scholar]
  5. Ciocci, G., Mitchell, E. P., Cautier, C., Wimmerova, M., Sudakevitz, D., Perez, S., Gilboa-Garber, N. & Imberty, A. ( 2003; ). Structural basis of calcium and galactose recognition by the lectin PA-IL of Pseudomonas aeruginosa. FEBS Lett 555, 297–301.[CrossRef]
    [Google Scholar]
  6. Dewhirst, F. E., Paster, B. J. & Bright, P. L. ( 1989; ). Chromobacterium, Eikenella, Kingella, Neisseria, Simonsiella, and Vitreoscilla species comprise a major branch of the beta group Proteobacteria by 16S ribosomal ribonucleic acid sequence comparison: transfer of Eikenella and Simonsiella to the family Neisseriaceae (emend.). Int J Syst Bacteriol 39, 258–266.[CrossRef]
    [Google Scholar]
  7. Diggle, S. P., Winzer, K., Lazdunski, A., Williams, P. & Camara, M. ( 2002; ). Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J Bacteriol 184, 2576–2586.[CrossRef]
    [Google Scholar]
  8. Duran, N. & Menck, C. F. ( 2001; ). Chromobacterium violaceum: a review of pharmacological and industrial perspectives. Crit Rev Microbiol 27, 201–222.[CrossRef]
    [Google Scholar]
  9. Faramarzi, M. A., Stagars, M., Pensini, E., Krebs, W. & Brandl, H. ( 2004; ). Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum. J Biotechnol 113, 321–326.[CrossRef]
    [Google Scholar]
  10. Fugua, W. C., Winans, S. C. & Greenberg, E. P. ( 1994; ). Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176, 269–275.
    [Google Scholar]
  11. Garber, N., Guempel, U., Gilboa-Garber, N. & Doyle, R. J. ( 1987; ). Specificity of the fucose-binding lectin of Pseudomonas aeruginosa. FEMS Microbiol Lett 48, 331–334.[CrossRef]
    [Google Scholar]
  12. Gilboa-Garber, N. ( 1972; ). Inhibition of broad spectrum hemagglutinin from Pseudomonas aeruginosa by d-galactose and its derivatives. FEBS Lett 20, 242–244.[CrossRef]
    [Google Scholar]
  13. Gilboa-Garber, N. ( 1982; ). Pseudomonas aeruginosa lectins. Methods Enzymol 83, 378–385.
    [Google Scholar]
  14. Gilboa-Garber, N. ( 1997; ). Multiple aspects of Pseudomonas aeruginosa lectins. Nova Acta Leopold 75, 153–177.
    [Google Scholar]
  15. Gilboa-Garber, N. & Garber, N. ( 1989; ). Microbial lectin cofunction with lytic activities as a model for a general basic lectin role. FEMS Microbiol Rev 63, 211–222.
    [Google Scholar]
  16. Gilboa-Garber, N., Katcoff, D. J. & Garber, N. C. ( 2000; ). Identification and characterization of Pseudomonas aeruginosa PA-IIL lectin gene and protein compared to PA-IL. FEMS Immunol Med Microbiol 29, 53–57.[CrossRef]
    [Google Scholar]
  17. Imberty, A., Wimmerova, M., Mitchell, E. P. & Gilboa-Garber, N. ( 2004; ). Structures of the lectins from Pseudomonas aeruginosa: insights into the molecular basis for host glycan recognition. Microb Infect 6, 221–228.[CrossRef]
    [Google Scholar]
  18. Lichstein, H. C. & Van de Sand, V. F. ( 1945; ). Violacein, an antibiotic pigment produced by Chromobacterium violaceum. J Infect Dis 76, 47–51.[CrossRef]
    [Google Scholar]
  19. Martinelli, D., Grossmann, G., Sequin, U., Brandl, H. & Bachofen, R. ( 2004; ). Effects of natural and chemically synthesized furanones on quorum sensing in Chromobacterium violaceum. BMC Microbiol 4, 25.[CrossRef]
    [Google Scholar]
  20. McClean, K. H., Winson, M. K., Fish, L. & 9 other authors ( 1997; ). Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143, 3703–3711.[CrossRef]
    [Google Scholar]
  21. Melo, P. S., Justo, G. Z., de Azevedo, M. B. M., Duran, N. & Haun, M. ( 2003; ). Violacein and its beta-cyclodextrin complexes induce apoptosis and differentiation in HL60 cells. Toxicology 186, 217–225.[CrossRef]
    [Google Scholar]
  22. Mitchell, E., Houles, C., Sudakevitz, D., Wimmerova, M., Gautier, C., Perez, S., Wu, A. M., Gilboa-Garber, N. & Imberty, A. ( 2002; ). Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lung of cystic fibrosis patients. Nat Struct Biol 9, 918–921.[CrossRef]
    [Google Scholar]
  23. Pemberton, J. M., Vincent, K. M. & Penfold, R. J. ( 1991; ). Cloning and heterologous expression of the violacein biosynthesis gene cluster from Chromobacterium violaceum. Curr Microbiol 22, 355–358.[CrossRef]
    [Google Scholar]
  24. Salanoubat, M., Genin, S., Artiguenave, F. & 25 other authors ( 2002; ). Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415, 497–502.[CrossRef]
    [Google Scholar]
  25. Shao, P. L., Hsueh, P. R., Chang, Y. C., Lu, C. Y., Lee, P. Y., Lee, C. Y. & Huang, L. M. ( 2002; ). Chromobacterium violaceum infection in children: a case of fatal septicemia with nasopharyngeal abscess and literature review. Pediatr Infect Dis J 21, 707–709.[CrossRef]
    [Google Scholar]
  26. Shaw, P. D., Ping, G., Daly, S. L., Cha, C., Cronan, J. E., Jr, Rinehart, K. L. & Farand, S. K. ( 1997; ). Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin layer chromatography. Proc Natl Acad Sci U S A 94, 6036–6041.[CrossRef]
    [Google Scholar]
  27. Stover, C. K., Pham, X. Q., Erwin, A. L. & 28 other authors ( 2000; ). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959–964.[CrossRef]
    [Google Scholar]
  28. Sudakevitz, D., Kostlanova, N., Blatman-Jan, G., Mitchell, E. P., Lerrer, B., Wimmerova, M., Katcoff, D. J., Imberty, A. & Gilboa-Garber, N. ( 2004; ). A new Ralstonia solanacearum high-affinity mannose-binding lectin RS-IIL structurally resembling the Pseudomonas aeruginosa fucose-specific lectin PA-IIL. Mol Microbiol 52, 691–700.[CrossRef]
    [Google Scholar]
  29. Swift, S., Williams, P. & Stewart, G. S. A. B. ( 1999; ). N-acylhomoserine lactones and quorum sensing in proteobacteria. In Cell-Cell Signaling in Bacteria, pp. 291–313. Edited by G. M. Dunny & S. C. Winans. Washington, DC: American Society for Microbiology.
  30. Tielker, D., Hacker, S., Loris, R., Strathmann, M., Wingender, J., Wilhelm, S., Rosenau, F. & Jaeger, K. E. ( 2005; ). Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology 151, 1313–1323.[CrossRef]
    [Google Scholar]
  31. Uroz, S., D'Angelo-Picard, C., Carlier, A., Elasri, M., Sicot, C., Petit, A., Oger, P., Faure, D. & Dessaux, Y. ( 2003; ). Novel bacteria degrading N-acylhomoserine lactones and their use as quenchers of quorum-sensing-regulated functions of plant-pathogenic bacteria. Microbiology 149, 1981–1989.[CrossRef]
    [Google Scholar]
  32. Wimmerova, M., Mitchell, E. P., Budova, M., Sabin, C., Kostlanova, N., Perret, S., Cioci, G., Gilboa-Garber, N. & Imberty, A. ( 2005; ). PA-II-like lectins: new family of high affinity present in opportunistic bacteria. In Glycoproteomics: Protein Modifications for Versatile Functions, Dubrovnik, 2005, p. 94 (abstract no. 94).
  33. Winzer, K., Falconer, C., Garber, N. C., Diggle, S. P., Camara, M. & Williams, P. ( 2000; ). The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J Bacteriol 182, 6401–6411.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28500-0
Loading
/content/journal/micro/10.1099/mic.0.28500-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error