1887

Abstract

Bacterial fructosyltransferase (FTF) enzymes synthesize fructan polymers from sucrose. FTFs catalyse two different reactions, depending on the nature of the acceptor, resulting in: (i) transglycosylation, when the growing fructan chain (polymerization), or mono- and oligosaccharides (oligosaccharide synthesis), are used as the acceptor substrate; (ii) hydrolysis, when water is used as the acceptor. 121 levansucrase (Lev) and inulosucrase (Inu) enzymes are closely related at the amino acid sequence level (86 % similarity). Also, the eight amino acid residues known to be involved in catalysis and/or sucrose binding are completely conserved. Nevertheless, these enzymes differ markedly in their reaction and product specificities, i.e. in (2→6)- versus (2→1)-glycosidic-bond specificity (resulting in levan and inulin synthesis, respectively), and in the ratio of hydrolysis versus transglycosylation activities [resulting in glucose and fructooligosaccharides (FOSs)/polymer synthesis, respectively]. The authors report a detailed characterization of the transglycosylation reaction products synthesized by the 121 Lev and Inu enzymes from sucrose and related oligosaccharide substrates. Lev mainly converted sucrose into a large levan polymer (processive reaction), whereas Inu synthesized mainly a broad range of FOSs of the inulin type (non-processive reaction). Interestingly, the two FTF enzymes were also able to utilize various inulin-type FOSs (1-kestose, 1,1-nystose and 1,1,1-kestopentaose) as substrates, catalysing a disproportionation reaction; to the best of our knowledge, this has not been reported for bacterial FTF enzymes. Based on these data, a model is proposed for the organization of the sugar-binding subsites in the two 121 FTF enzymes. This model also explains the catalytic mechanism of the enzymes, and differences in their product specificities.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28484-0
2006-04-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/4/1187.html?itemId=/content/journal/micro/10.1099/mic.0.28484-0&mimeType=html&fmt=ahah

References

  1. Albenne, C., Skov, L. K., Mirza, O., Gajhede, M., Potocki-Veronese, G., Monsan, P. & Remaud-Simeon, M. ( 2002; ). Maltooligosaccharide disproportionation reaction: an intrinsic property of amylosucrase from Neisseria polysaccharea. FEBS Lett 527, 67–70.[CrossRef]
    [Google Scholar]
  2. Baird, J. K., Longyear, V. M. C. & Ellwood, D. C. ( 1973; ). Water insoluble and soluble glucans produced by extracellular glycosyltransferases from Streptococcus mutans. Microbios 8, 143–150.
    [Google Scholar]
  3. Casas, I. A., Edens, F. W. & Dobrogosz, W. J. ( 1998; ). Lactobacillus reuteri: an effective probiotic for poultry and other animals. In Lactic Acid Bacteria: Microbiological and Functional Aspects, pp. 475–518. Edited by W. Salminen & A. Von Wright. New York: Marcel Dekker.
  4. Chambert, R. & Gonzy-Treboul, G. ( 1976; ). Levansucrase of Bacillus subtilis. Characterization of a stabilized fructosyl–enzyme complex and identification of an aspartyl residue as the binding site of the fructosyl group. Eur J Biochem 71, 493–508.[CrossRef]
    [Google Scholar]
  5. Chambert, R. & Petit-Glatron, M. F. ( 1991; ). Polymerase and hydrolase activities of Bacillus subtilis levansucrase can be separately modulated by site-directed mutagenesis. Biochem J 279, 35–41.
    [Google Scholar]
  6. Chambert, R., Treboul, G. & Dedonder, R. ( 1974; ). Kinetic studies of levansucrase of Bacillus subtilis. Eur J Biochem 41, 285–300.[CrossRef]
    [Google Scholar]
  7. Coutinho, P. M. & Henrissat, B. ( 1999; ). Carbohydrate-active enzymes: an integrated database approach. In Recent Advances in Carbohydrate Bioengineering, pp. 3–12. Edited by H. J. Gilbert, G. J. Davies, B. Henrissat & B. Svensson. Cambridge, UK: The Royal Society of Chemistry.
  8. Davies, G. J., Wilson, K. S. & Henrissat, B. ( 1997; ). Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J 321, 557–559.
    [Google Scholar]
  9. Doelle, H. W., Kirk, L., Crittenden, R., Toh, H. & Doelle, M. B. ( 1993; ). Zymomonas mobilis – science and industrial application. Crit Rev Biotechnol 13, 57–98.[CrossRef]
    [Google Scholar]
  10. Euzenat, O., Guibert, A. & Combes, D. ( 2005; ). Production of fructo-oligosaccharides by levansucrase from Bacillus subtilis C4. Proc Biochem 32, 237–243.
    [Google Scholar]
  11. Gross, M., Geier, G., Rudolph, K. & Geider, K. ( 1992; ). Levan and levansucrase synthesized by the fireblight pathogen Erwinia amylovora. Physiol Mol Plant Pathol 40, 371–381.[CrossRef]
    [Google Scholar]
  12. Hernández, L., Arrieta, J., Menéndez, C., Vazquez, R., Coego, A., Suarez, V., Selman, G., Petit-Glatron, M. F. & Chambert, R. ( 1995; ). Isolation and enzymic properties of levansucrase secreted by Acetobacter diazotrophicus SRT4, a bacterium associated with sugar cane. Biochem J 309, 113–118.
    [Google Scholar]
  13. Hestrin, S., Feingold, D. S. & Avigad, G. ( 1956; ). The mechanism of polysaccharide production from sucrose. Biochem J 64, 340–351.
    [Google Scholar]
  14. Heyer, A. G., Schroeer, B., Radosta, S., Wolff, D., Czapla, S. & Springer, J. ( 1998; ). Structure of the enzymatically synthesized fructan inulin. Carbohydr Res 313, 165–174.[CrossRef]
    [Google Scholar]
  15. Korakli, M., Rossmann, A., Ganzle, M. G. & Vogel, R. F. ( 2001; ). Sucrose metabolism and exopolysaccharide production in wheat and rye sourdoughs by Lactobacillus sanfranciscensis. J Agric Food Chem 49, 5194–5200.[CrossRef]
    [Google Scholar]
  16. Korakli, M., Pavlovic, M., Ganzle, M. G. & Vogel, R. F. ( 2003; ). Exopolysaccharide and kestose production by Lactobacillus sanfranciscensis LTH2590. Appl Environ Microbiol 69, 2073–2079.[CrossRef]
    [Google Scholar]
  17. Martinez-Fleites, C., Ortiz-Lombardia, M., Pons, T., Tarbouriech, N., Taylor, E. J., Arrieta, J. G., Hernandez, L. & Davies, G. J. ( 2005; ). Crystal structure of levansucrase from the Gram-negative bacterium Gluconacetobacter diazotrophicus. Biochem J 390, 19–27.[CrossRef]
    [Google Scholar]
  18. Meng, G. & Futterer, K. ( 2003; ). Structural framework of fructosyl transfer in Bacillus subtilis levansucrase. Nat Struct Biol 10, 935–941.[CrossRef]
    [Google Scholar]
  19. Menne, E., Guggenbuhl, N. & Roberfroid, M. ( 2000; ). Fn-type chicory inulin hydrolysate has a prebiotic effect in humans. J Nutr 130, 1197–1199.
    [Google Scholar]
  20. Mirza, O., Skov, L. K., Remaud-Simeon, M., Potocki de Montalk, M., Albenne, C., Monsan, P. & Gajhede, M. ( 2001; ). Crystal structures of amylosucrase from Neisseria polysaccharea in complex with d-glucose and the active site mutant Glu328Gln in complex with the natural substrate sucrose. Biochemistry 40, 9032–9039.[CrossRef]
    [Google Scholar]
  21. Olivares-Illana, V., Wacher-Rodarte, C., Le Borgne, S. & López-Munguía, A. ( 2002; ). Characterization of a cell-associated inulosucrase from a novel source: a Leuconostoc citreum strain isolated from Pozol, a fermented corn beverage from Mayan origin. J Ind Microbiol Biotechnol 28, 112–117.[CrossRef]
    [Google Scholar]
  22. Ozimek, L. K., van Hijum, S. A., van Koningsveld, G. A., van der Maarel, M. J., Geel-Schutten, G. H. & Dijkhuizen, L. ( 2004; ). Site-directed mutagenesis study of the three catalytic residues of the fructosyltransferases of Lactobacillus reuteri 121. FEBS Lett 560, 131–133.[CrossRef]
    [Google Scholar]
  23. Ozimek, L. K., Euverink, G. J., van der Maarel, M. J. & Dijkhuizen, L. ( 2005; ). Mutational analysis of the role of calcium ions in the Lactobacillus reuteri strain 121 fructosyltransferase (levansucrase and inulosucrase) enzymes. FEBS Lett 579, 1124–1128.[CrossRef]
    [Google Scholar]
  24. Rosell, K. G. & Birkhed, D. ( 1974; ). An inulin-like fructan produced by Streptococcus mutans strain JC2. Acta Chem Scand B28, 589.
    [Google Scholar]
  25. Rozen, R., Bachrach, G., Bronshteyn, M., Gedalia, I. & Steinberg, D. ( 2001; ). The role of fructans on dental biofilm formation by Streptococcus sobrinus, Streptococcus mutans, Streptococcus gordonii and Actinomyces viscosus. FEMS Microbiol Lett 195, 205–210.[CrossRef]
    [Google Scholar]
  26. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  27. Song, D. D. & Jacques, N. A. ( 1999; ). Purification and enzymic properties of the fructosyltransferase of Streptococcus salivarius ATCC 25975. Biochem J 341, 285–291.[CrossRef]
    [Google Scholar]
  28. Steinmetz, M., Le Coq, D., Aymerich, S., Gonzy-Treboul, G. & Gay, P. ( 1985; ). The DNA sequence of the gene for the secreted Bacillus subtilis enzyme levansucrase and its genetic control sites. Mol Gen Genet 200, 220–228.[CrossRef]
    [Google Scholar]
  29. Támbara, Y., Hormaza, J. V., Pérez, C., León, A., Arrieta, J. & Hernández, L. ( 1999; ). Structural analysis and optimised production of fructo-oligosaccharides by levansucrase from Acetobacter diazotrophicus SRT4. Biotechnol Lett 117–121.
    [Google Scholar]
  30. Tanaka, T., Yamamoto, S., Oi, S. & Yamamoto, T. ( 1981; ). Structures of heterooligosaccharides synthesized by levansucrase. J Biochem 90, 521–526.
    [Google Scholar]
  31. Tieking, M., Kuhnl, W. & Ganzle, M. G. ( 2005; ). Evidence for formation of heterooligosaccharides by Lactobacillus sanfranciscensis during growth in wheat sourdough. J Agric Food Chem 53, 2456–2461.[CrossRef]
    [Google Scholar]
  32. Trujillo, L. E., Gomez, R., Banguela, A., Soto, M., Arrieta, J. G. & Hernández, L. ( 2004; ). Catalytical properties of N-glycosylated Gluconacetobacter diazotrophicus levansucrase produced in yeast. Electron J Biotechnol 7, 116–123.
    [Google Scholar]
  33. Valeur, N., Engel, P., Carbajal, N., Connolly, E. & Ladefoged, K. ( 2004; ). Colonization and immunomodulation by Lactobacillus reuteri ATCC 55730 in the human gastrointestinal tract. Appl Environ Microbiol 70, 1176–1181.[CrossRef]
    [Google Scholar]
  34. van Hijum, S. A., Bonting, K., van der Maarel, M. J. & Dijkhuizen, L. ( 2001; ). Purification of a novel fructosyltransferase from Lactobacillus reuteri strain 121 and characterization of the levan produced. FEMS Microbiol Lett 205, 323–328.[CrossRef]
    [Google Scholar]
  35. van Hijum, S. A., van Geel-Schutten, G. H., Rahaoui, H., van der Maarel, M. J. & Dijkhuizen, L. ( 2002; ). Characterization of a novel fructosyltransferase from Lactobacillus reuteri that synthesizes high-molecular-weight inulin and inulin oligosaccharides. Appl Environ Microbiol 68, 4390–4398.[CrossRef]
    [Google Scholar]
  36. van Hijum, S. A., van der Maarel, M. J. & Dijkhuizen, L. ( 2003; ). Kinetic properties of an inulosucrase from Lactobacillus reuteri 121. FEBS Lett 534, 207–210.[CrossRef]
    [Google Scholar]
  37. van Hijum, S. A., Szalowska, E., van der Maarel, M. J. & Dijkhuizen, L. ( 2004; ). Biochemical and molecular characterization of a levansucrase from Lactobacillus reuteri. Microbiology 150, 621–630.[CrossRef]
    [Google Scholar]
  38. van Loo, J., Coussement, P., de Leenheer, L., Hoebregs, H. & Smits, G. ( 1995; ). On the presence of inulin and oligofructose as natural ingredients in the western diet. Crit Rev Food Sci Nutr 35, 525–552.[CrossRef]
    [Google Scholar]
  39. Yanase, H., Maeda, M., Hagiwara, E., Yagi, H., Taniguchi, K. & Okamoto, K. ( 2002; ). Identification of functionally important amino acid residues in Zymomonas mobilis levansucrase. J Biochem 132, 565–572.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28484-0
Loading
/content/journal/micro/10.1099/mic.0.28484-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error