1887

Abstract

is one of the most frequently found oral spirochaetes in periodontitis and endodontic infections. LPS or glycolipids from bacteria are potent stimulators of innate immune and inflammatory systems. In this study the bioactivity of a phenol/water extract from subsp. (TSS-P) was analysed. TSS-P showed minimal endotoxicity and no inducing potential for proinflammatory cytokines (TNF- and IL-8) or for intercellular adhesion molecule-1 (ICAM-1) in human monocyte cell line THP-1 cells and primary cultured human gingival fibroblasts. Rather, it inhibited ICAM-1 expression and IL-8 secretion from cells stimulated by the LPS of and , which are known to be Toll-like receptor 4 (TLR4) agonists. However, this antagonistic activity was not shown in cells stimulated by peptidoglycan or IL-1. As its antagonistic mechanism, TSS-P blocked the binding of LPS to LPS-binding protein (LBP) and CD14, which are molecules involved in the recruitment of LPS to the cell membrane receptor complex TLR4–MD-2 for the intracellular signalling of LPS. TSS-P itself did not bind to MD-2 or THP-1 cells, but inhibited the binding of LPS to MD-2 or to the cells in the presence of serum (which could be replaced by recombinant human LBP and recombinant human CD14). The results suggest that TSS-P acts as an antagonist of TLR4 signalling by interfering with the functioning of LBP/CD14.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28470-0
2006-02-01
2020-04-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/2/535.html?itemId=/content/journal/micro/10.1099/mic.0.28470-0&mimeType=html&fmt=ahah

References

  1. Akashi S, Saitoh S, Wakabayashi Y.9 other authors 2003; Lipopolysaccharide interaction with cell surface Toll-like receptor 4-MD-2: higher affinity than that with MD-2 or CD14. J Exp Med198:1035–1042[CrossRef]
    [Google Scholar]
  2. Asai Y, Hashimoto M, Ogawa T. 2003a; Treponemal glycoconjugate inhibits Toll-like receptor ligand-induced cell activation by blocking LPS-binding protein and CD14 functions. Eur J Immunol33:3196–3204[CrossRef]
    [Google Scholar]
  3. Asai Y, Jinno T, Ogawa T. 2003b; Oral treponemes and their outer membrane extracts activate human gingival epithelial cells through Toll-like receptor 2. Infect Immun71:717–725[CrossRef]
    [Google Scholar]
  4. Baumgartner J. C, Khemaleelakul S. U, Xia T. 2003; Identification of spirochetes (treponemes) in endodontic infections. J Endod29:794–797[CrossRef]
    [Google Scholar]
  5. Brandenburg K, Andra J, Muller M, Koch M. H, Garidel P. 2003; Physicochemical properties of bacterial glycopolymers in relation to bioactivity. Carbohydr Res338:2477–2489[CrossRef]
    [Google Scholar]
  6. Chan E. C, Siboo R, Touyz L. Z, Qui Y. S, Klitorinos A. 1993; A successful method for quantifying viable oral anaerobic spirochetes. Oral Microbiol Immunol8:80–83[CrossRef]
    [Google Scholar]
  7. Choi B. K, Jung J. H, Suh H. Y, Yoo Y. J, Cho K. S, Chai J. K, Kim C. K. 2001; Activation of matrix metalloproteinase-2 by a novel oral spirochetal species Treponema lecithinolyticum . J Periodontol72:1594–1600[CrossRef]
    [Google Scholar]
  8. Choi B. K, Lee H. J, Kang J. H, Jeong G. J, Min C. K, Yoo Y. J. 2003; Induction of osteoclastogenesis and matrix metalloproteinase expression by the lipooligosaccharide of Treponema denticola . Infect Immun71:226–233[CrossRef]
    [Google Scholar]
  9. Choi B. K, Moon S. Y, Cha J. H, Kim K. W, Yoo Y. J. 2005; Prostaglandin E[sub]2[/sub] is a main mediator in receptor activator of nuclear factor-kappaB ligand-dependent osteoclastogenesis induced by Porphyromonas gingivalis , Treponema denticola , and Treponema socranskii . J Periodontol76:813–820[CrossRef]
    [Google Scholar]
  10. Coats S. R, Reife R. A, Bainbridge B. W, Pham T. T, Darveau R. P. 2003; Porphyromonas gingivalis lipopolysaccharide antagonizes Escherichia coli lipopolysaccharide at Toll-like receptor 4 in human endothelial cells. Infect Immun71:6799–6807[CrossRef]
    [Google Scholar]
  11. Correia F. F, Plummer A. R, Ellen R. P, Wyss C, Boches S. K, Galvin J. L, Paster B. J, Dewhirst F. E. 2003; Two paralogous families of a two-gene subtilisin operon are widely distributed in oral treponemes. J Bacteriol185:6860–6869[CrossRef]
    [Google Scholar]
  12. Cutler C. W, Eke P. I, Genco C. A, Van Dyke T. E, Arnold R. R. 1996; Hemin-induced modifications of the antigenicity and hemin-binding capacity of Porphyromonas gingivalis lipopolysaccharide. Infect Immun64:2282–2287
    [Google Scholar]
  13. Darveau R. P, Pham T. T, Lemley K, Reife R. A, Bainbridge B. W, Coats S. R, Howald W. N, Way S. S, Hajjar A. M. 2004; Porphyromonas gingivalis lipopolysaccharide contains multiple lipid A species that functionally interact with both Toll-like receptors 2 and 4. Infect Immun72:5041–5051[CrossRef]
    [Google Scholar]
  14. Ellen R. P, Galimanas V. B. 2005; Spirochetes at the forefront of periodontal infections. Periodontol 2000;38:13–32[CrossRef]
    [Google Scholar]
  15. Girardin S. E, Philpott D. J. 2004; Mini-review: the role of peptidoglycan recognition in innate immunity. Eur J Immunol34:1777–1782[CrossRef]
    [Google Scholar]
  16. Hajjar A. M, Ernst R. K, Tsai J. H, Wilson C. B, Miller S. I. 2002; Human Toll-like receptor 4 recognizes host-specific LPS modifications. Nat Immunol3:354–359[CrossRef]
    [Google Scholar]
  17. Hashimoto M, Asai Y, Jinno T, Adachi S, Kusumoto S, Ogawa T. 2003; Structural elucidation of polysaccharide part of glycoconjugate from Treponema medium ATCC 700293. Eur J Biochem270:2671–2679[CrossRef]
    [Google Scholar]
  18. Heuner K, Bergmann I, Heckenbach K, Göbel U. B. 2001; Proteolytic activity among various oral Treponema species and cloning of a prtP -like gene of Treponema socranskii subsp. socranskii . FEMS Microbiol Lett201:169–176
    [Google Scholar]
  19. Hirschfeld M, Weis J. J, Toshchakov V, Salkowski C. A, Cody M. J, Ward D. C, Qureshi N, Michalek S. M, Vogel S. N. 2001; Signaling by Toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect Immun69:1477–1482[CrossRef]
    [Google Scholar]
  20. Jarvis B. W, Lichenstein H, Qureshi N. 1997; Diphosphoryl lipid A from Rhodobacter sphaeroides inhibits complexes that form in vitro between lipopolysaccharide (LPS)-binding protein, soluble CD14, and spectrally pure LPS. Infect Immun65:3011–3016
    [Google Scholar]
  21. Kesavalu L, Falk C. W, Davis K. J, Steffen M. J, Xu X, Holt S. C, Ebersole J. L. 2002; Biological characterization of lipopolysaccharide from Treponema pectinovorum . Infect Immun70:211–217[CrossRef]
    [Google Scholar]
  22. Lee S. H, Kim K. K, Choi B. K. 2005; Upregulation of intercellular adhesion molecule 1 and proinflammatory cytokines by the major surface proteins of Treponema maltophilum and Treponema lecithinolyticum , the phylogenetic group IV oral spirochetes associated with periodontitis and endodontic infections. Infect Immun73:268–276[CrossRef]
    [Google Scholar]
  23. Lepper P. M, Triantafilou M, Schumann C, Schneider E. M, Triantafilou K. 2005; Lipopolysaccharides from Helicobacter pylori can act as antagonists for Toll-like receptor 4. Cell Microbiol7:519–528[CrossRef]
    [Google Scholar]
  24. Lohmann K. L, Vandenplas M, Barton M. H, Moore J. N. 2003; Lipopolysaccharide from Rhodobacter sphaeroides is an agonist in equine cells. J Endotoxin Res9:33–37[CrossRef]
    [Google Scholar]
  25. Loppnow H, Libby P, Freudenberg M. A, Kraus J. H, Weckesser J, Mayer H. 1990; Cytokine induction by lipopolysaccharide (LPS) corresponds to the lethal toxicity and is inhibited by nontoxic Rhodobacter capsulatus LPS. Infect Immun58:3743–3750
    [Google Scholar]
  26. Mancek M, Pristovsek P, Jerala R. 2002; Identification of LPS-binding peptide fragment of MD-2, a Toll-receptor accessory protein. Biochem Biophys Res Commun292:880–885[CrossRef]
    [Google Scholar]
  27. Martin M. U, Wesche H. 2002; Summary and comparison of the signaling mechanisms of the Toll/interleukin-1 receptor family. Biochim Biophys Acta1592:265–280[CrossRef]
    [Google Scholar]
  28. Miller S. I, Ernst R. K, Bader M. W. 2005; LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol3:36–46[CrossRef]
    [Google Scholar]
  29. Miyake K. 2003; Innate recognition of lipopolysaccharide by CD14 and Toll-like receptor 4-MD-2: unique roles for MD-2. Int Immunopharmacol3:119–128[CrossRef]
    [Google Scholar]
  30. Moter A, Hoenig C, Choi B. K, Riep B, Göbel U. B. 1998; Molecular epidemiology of oral treponemes associated with periodontal disease. J Clin Microbiol36:1399–1403
    [Google Scholar]
  31. Opitz B, Spreitzer I, Schröder N. W.7 other authors 2001; Toll-like receptor-2 mediates Treponema glycolipid and lipoteichoic acid-induced NF-kappaB translocation. J Biol Chem276:22041–22047[CrossRef]
    [Google Scholar]
  32. Palsson-McDermott E. M, O'Neill L. A. 2004; Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunol113:153–162[CrossRef]
    [Google Scholar]
  33. Re F, Strominger J. L. 2003; Separate functional domains of human MD-2 mediate Toll-like receptor 4-binding and lipopolysaccharide responsiveness. J Immunol171:5272–5276[CrossRef]
    [Google Scholar]
  34. Riviere G. R, Riviere K. H, Smith K. S. 2002; Molecular and immunological evidence of oral Treponema in the human brain and their association with Alzheimer's disease. Oral Microbiol Immunol17:113–118[CrossRef]
    [Google Scholar]
  35. Rosen G, Sela M. N, Naor R, Halabi A, Barak V, Shapira L. 1999; Activation of murine macrophages by lipoprotein and lipooligosaccharide of Treponema denticola . Infect Immun67:1180–1186
    [Google Scholar]
  36. Saitoh S, Akashi S, Yamada T.10 other authors 2004; Lipid A antagonist, lipid IVa, is distinct from lipid A in interaction with Toll-like receptor 4 (TLR4)-MD-2 and ligand-induced TLR4 oligomerization. Int Immunol16:961–969[CrossRef]
    [Google Scholar]
  37. Schröder N. W, Opitz B, Lamping N, Michelsen K. S, Zahringer U, Schumann R. R, Göbel U. B. 2000; Involvement of lipopolysaccharide binding protein, CD14, and Toll-like receptors in the initiation of innate immune responses by Treponema glycolipids. J Immunol165:2683–2693[CrossRef]
    [Google Scholar]
  38. Schromm A. B, Brandenburg K, Loppnow H, Moran A. P, Koch M. H, Rietschel E. T, Seydel U. 2000; Biological activities of lipopolysaccharides are determined by the shape of their lipid A portion. Eur J Biochem267:2008–2013[CrossRef]
    [Google Scholar]
  39. Schultz C. P, Wolf V, Lange R, Mertens E, Wecke J, Naumann D, Zahringer U. 1998; Evidence for a new type of outer membrane lipid in oral spirochete Treponema denticola . Functioning permeation barrier without lipopolysaccharides. J Biol Chem273:15661–15666[CrossRef]
    [Google Scholar]
  40. Shimizu T, Yokota S, Takahashi S.8 other authors 2004; Membrane-anchored CD14 is important for induction of interleukin-8 by lipopolysaccharide and peptidoglycan in uroepithelial cells. Clin Diagn Lab Immunol11:969–976
    [Google Scholar]
  41. Smibert R. M, Johnson J. L, Ranney R. R. 1984; Treponema socranskii sp. nov., Treponema socranskii subsp. socranskii subsp.nov., Treponema socranskii subsp. buccale subsp. nov., Treponema socranskii subsp. paredis subsp. nov., isolated from the human periodontia. Int J Syst Bacteriol34:457–462[CrossRef]
    [Google Scholar]
  42. Socransky S. S, Haffajee A. D, Smith C, Dibart S. 1991; Relation of counts of microbial species to clinical status at the sampled site. J Clin Periodontol18:766–775[CrossRef]
    [Google Scholar]
  43. Takeuchi Y, Umeda M, Sakamoto M, Benno Y, Huang Y, Ishikawa I. 2001; Treponema socranskii , Treponema denticola , and Porphyromonas gingivalis are associated with severity of periodontal tissue destruction. J Periodontol72:1354–1363[CrossRef]
    [Google Scholar]
  44. Thomas C. J, Kapoor M, Sharma S, Bausinger H, Zyilan U, Lipsker D, Hanau D, Surolia A. 2002; Evidence of a trimolecular complex involving LPS, LPS binding protein and soluble CD14 as an effector of LPS response. FEBS Lett531:184–188[CrossRef]
    [Google Scholar]
  45. Travassos L. H, Girardin S. E, Philpott D. J, Blanot D, Nahori M.-A, Werts C, Boneca I. G. 2004; Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Rep5:1000–1006[CrossRef]
    [Google Scholar]
  46. Walker S. G, Xu X, Altman E, Davis K. J, Ebersole J. L, Holt S. C. 1999; Isolation and chemical analysis of a lipopolysaccharide from the outer membrane of the oral anaerobic spirochete Treponema pectinovorum . Oral Microbiol Immunol14:304–308[CrossRef]
    [Google Scholar]
  47. Werts C, Tapping R. I, Mathison J. C.13 other authors 2001; Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat Immunol2:346–352[CrossRef]
    [Google Scholar]
  48. Wyss C, Choi B. K, Moter A, Guggenheim B, Schüpbach P, Göbel U. B. 1999; Treponema lecithinolyticum sp. nov., a small saccharolytic spirochaete with phospholipase A and C activities associated with periodontal diseases. Int J Syst Bacteriol49:1329–1339[CrossRef]
    [Google Scholar]
  49. Wyss C, Moter A, Choi B. K, Dewhirst F. E, Xue Y, Schupbach P, Paster B. J, Guggenheim B, Göbel U. B. 2004; Treponema putidum sp. nov., a medium-sized proteolytic spirochaete isolated from lesions of human periodontitis and acute necrotizing ulcerative gingivitis. Int J Syst Evol Microbiol54:1117–1122[CrossRef]
    [Google Scholar]
  50. Yoshimura A, Kaneko T, Kato Y, Golenbock D. T, Hara Y. 2002; Lipopolysaccharides from periodontopathic bacteria Porphyromonas gingivalis and Capnocytophaga ochracea are antagonists for human Toll-like receptor 4. Infect Immun70:218–225[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28470-0
Loading
/content/journal/micro/10.1099/mic.0.28470-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error