1887

Abstract

Adhesion of micro-organisms to biotic and abiotic surfaces is an important virulence factor and involves different types of interactions. , a human commensal and an important opportunistic pathogen, has the ability to adhere to surfaces. Biliary stents frequently become clogged with bacterial biofilms, with as one of the predominant species. Six strains isolated from clogged biliary stents were investigated for the presence of specific biochemical factors involved in their adhesion: aggregation substances (Aggs) and the enterococcal surface protein (encoded by the gene). In addition, physico-chemical factors involved in adhesion (zeta potential and cell surface hydrophobicity) were determined, as well as the influence of ox bile on these properties. Two-thirds of the biliary stent isolates displayed culture heterogeneity in the pH dependence of their zeta potentials. Moreover, 24 out of 46 clinical isolates of , including 11 laboratory strains, also displayed such heterogeneity. The culture heterogeneity was demonstrated to be a stable trait, not caused by quorum sensing, not plasmid mediated, and independent of the presence of and Agg. Data presented show that culture heterogeneity in zeta potential enhances adhesion to an abiotic surface. A higher prevalence of culture heterogeneity in zeta potential in pathogenic as compared to non-pathogenic isolates could indicate that this phenomenon might play a role in virulence and putatively in pathogenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28460-0
2006-03-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/3/807.html?itemId=/content/journal/micro/10.1099/mic.0.28460-0&mimeType=html&fmt=ahah

References

  1. Barbier N, Saulnier P, Chachaty E, Dumontier S, Andremont A. 1996; Random amplified polymorphic DNA typing versus pulsed-field gel electrophoresis for epidemiological typing of vancomycin-resistant enterococci. J Clin Microbiol 34:1096–1099
    [Google Scholar]
  2. Chow J. W, Thal L. A, Perri M. B, Vazquez J. A, Donabedian S. M, Clewell D. B, Zervos M. J. 1993; Plasmid-associated hemolysin and aggregation substance production contribute to virulence in experimental enterococcal endocarditis. Antimicrob Agents Chemother 37:2474–2477 [CrossRef]
    [Google Scholar]
  3. Clewell D. B. 1993; Bacterial sex pheromone-induced plasmid transfer. Cell 73:9–12 [CrossRef]
    [Google Scholar]
  4. Clewell D. B, Tomich P. K, Gawron-Burke M. C, Franke A. E, Yagi Y, An F. Y. 1982; Mapping of Streptococcus faecalis plasmids pAD1 and pAD2 and studies relating to transposition of Tn 917 . J Bacteriol 152:1220–1230
    [Google Scholar]
  5. Clewell D. B, An F. Y, White B. A, Gawron-Burke M. C. 1985; Streptococcus faecalis sex-pheromone (cAM373) also produced by Staphylococcus aureus and identification of a conjugative transposon (Tn 918). J Bacteriol 162:1212–1220
    [Google Scholar]
  6. Cowan M. M, Van der Mei H. C, Stokroos I, Busscher H. J. 1992; Heterogeneity of surfaces of subgingival bacteria as detected by zeta potential measurements. J Dent Res 71:1803–1806 [CrossRef]
    [Google Scholar]
  7. Di Rosa R, Basoli A, Donelli G, Penni A, Salvatori F. M, Fiocca F, Baldassarri L. 1999; A microbiological and morphological study of blocked biliary stents. Microb Ecol Health Dis 11:84–88 [CrossRef]
    [Google Scholar]
  8. Donelli G, Paoletti C, Baldassarri L, Guablianone E, Di Rosa R, Magi G, Spinaci C, Facinelli B. 2004; Sex pheromone response, clumping, and slime production in enterococcal strains isolated from occluded biliary stents. J Clin Microbiol 42:3419–3427 [CrossRef]
    [Google Scholar]
  9. Dowidar N, Kolmos H. J, Lyon H, Matzen P. 1991; Clogging of biliary endoprostheses. A morphologic and bacteriologic study. Scand J Gastroenterol 26:1137–1144 [CrossRef]
    [Google Scholar]
  10. Dubnau D. 1991; Genetic competence in Bacillus subtilis . Microbiol Rev 55:395–424
    [Google Scholar]
  11. Dunny G. M, Brown B. L, Clewell D. B. 1978; Induced cell aggregation and mating in Streptococcus faecalis : evidence for a bacterial sex pheromone. Proc Natl Acad Sci U S A 75:3479–3483 [CrossRef]
    [Google Scholar]
  12. Dunny G. M, Funk C, Adsit J. 1981; Direct stimulation of the transfer of antibiotic-resistance by sex-pheromones in Streptococcus faecalis . Plasmid 6:270–278 [CrossRef]
    [Google Scholar]
  13. Ebersole R. C, McCormick R. M. 1993; Separation and isolation of viable bacteria by capillary zone electrophoresis. Biotechnology 11:1278–1282
    [Google Scholar]
  14. Geertsema-Doornbusch G. I, Noordmans J, Bruce A. W, Reid G, Khoury A. E, Van der Mei H. C, Busscher H. J. 1994; Quantification of microbial cell surface heterogeneity by microelectrophoresis and electron microscopy – application to lactobacilli after serial passaging. J Microbiol Methods 19:269–277 [CrossRef]
    [Google Scholar]
  15. Glynn J. R, Belongia B. M, Arnold R. G, Ogden K. L, Baygents J. C. 1998; Capillary electrophoresis measurements of electrophoretic mobility for colloidal particles of biological interest. Appl Environ Microbiol 64:2572–2577
    [Google Scholar]
  16. Hamoen L. W, Venema G, Kuipers O. P. 2003; Controlling competence in Bacillus subtilis : shared use of regulators. Microbiology 149:9–17 [CrossRef]
    [Google Scholar]
  17. Hirt H, Schlievert P. M, Dunny G. M. 2002; In vivo induction of virulence and antibiotic resistance transfer in Enterococcus faecalis mediated by the sex pheromone-sensing system of pCF10. Infect Immun 70:716–723 [CrossRef]
    [Google Scholar]
  18. Ike Y, Craig R. A, White B. A, Yagi Y, Clewell D. B. 1983; Modification of Streptococcus faecalis s ex-pheromones after acquisition of plasmid DNA. Proc Natl Acad Sci U S A 80:5369–5373 [CrossRef]
    [Google Scholar]
  19. Jacob A. E, Hobbs S. J. 1974; Conjugal transfer of plasmid-borne multiple antibiotic resistance in Streptococcus faecalis var. zymogenes . J Bacteriol 117:360–372
    [Google Scholar]
  20. Kayaoglu G, Østavik D. 2004; Virulence factors of Enterococcus faecalis : relationship to endodontic disease. Crit Rev Oral Biol Med 15:308–320 [CrossRef]
    [Google Scholar]
  21. Kell D. B, Ryder H. M, Kaprelyants A. S, Westerhoff H. V. 1991; Quantifying heterogeneity: flow cytometry of bacterial cultures. Antonie van Leeuwenhoek 60:145–158 [CrossRef]
    [Google Scholar]
  22. Low D. E, Keller N, Barth A, Jones R. N. 2001; Clinical prevalence, antimicrobial susceptibility, and geographic resistance patterns of enterococci: results from the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin Infect Dis 32:S133–S145 [CrossRef]
    [Google Scholar]
  23. Murray B. E, Singh K. V, Heath J. D, Sharma B. R, Weinstock G. M. 1990; Comparison of genomic DNAs of different enterococcal isolates using restriction endonucleases with infrequent recognition sites. J Clin Microbiol 28:2059–2063
    [Google Scholar]
  24. Muscholl A, Galli D, Wanner G, Wirth R. 1993; Sex pheromone plasmid pAD1-encoded aggregation substance of Enterococcus faecalis is positively regulated in trans by traE1 . Eur J Biochem 214:333–338 [CrossRef]
    [Google Scholar]
  25. Noordmans J, Kempen J, Busscher H. J. 1993; Automated image analysis to determine zeta potential distributions in particulate microelectrophoresis. J Colloid Interface Sci 156:394–399 [CrossRef]
    [Google Scholar]
  26. Shankar V, Baghdayan A. S, Huycke M. M, Lindahl G, Gilmore M. S. 1999; Infection-derived Enterococcus faecalis strains are enriched in esp , a gene encoding a novel surface protein. Infect Immun 67:193–200
    [Google Scholar]
  27. Shankar N, Baghdayan A. S, Gilmore M. S. 2001a; Modulation of virulence within a pathogenicity island in vancomycin-resistant Enterococcus faecalis . Nature 417:746–750
    [Google Scholar]
  28. Shankar N, Lockatell C. V, Baghdayan A. S, Drachenberg C, Gilmore M. S, Johnson D. E. 2001b; Role of Enterococcus faecalis s urface protein Esp in the pathogenesis of ascending urinary tract infection. Infect Immun 69:4366–4372 [CrossRef]
    [Google Scholar]
  29. Streger S. H, Vainberg S, Dong H. L, Hatzinger P. B. 2002; Enhancing transport of Hydrogenophaga flava ENV735 for bioaugmentation of aquifers contaminated with methyl tert -butyl ether. Appl Environ Microbiol 68:5571–5579 [CrossRef]
    [Google Scholar]
  30. Tendolkar P. M, Baghdayan A. S, Gilmore M. S, Shankar N. 2004; Enterococcal surface protein, Esp, enhances biofilm formation by Enterococcus faecalis . Infect Immun 72:6032–6039 [CrossRef]
    [Google Scholar]
  31. Toledo-Arana A, Valle J, Solano C. & 7 other authors; 2001; The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl Environ Microbiol 67:4538–4545 [CrossRef]
    [Google Scholar]
  32. Van der Mei H. C, Busscher H. J. 2001; Electrophoretic mobility distibutions of single-strain microbial populations. Appl Environ Microbiol 67:491–494 [CrossRef]
    [Google Scholar]
  33. Van Loosdrecht M. C. M, Lyklema J, Norde W, Schraa G, Zehnder A. J. B. 1987; Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl Environ Microbiol 53:1898–1901
    [Google Scholar]
  34. Van Oss C. J. 2003; Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions. J Mol Recognit 16:177–190 [CrossRef]
    [Google Scholar]
  35. Voigt A, Wolf H, Lauekner S, Neumann G, Becker R, Richter L. 1983; Electrokinetic properties of polymer and glass surfaces in aqueous solutions: experimental evidence for swollen surface layers. Biomaterials 4:299–304 [CrossRef]
    [Google Scholar]
  36. Waar K, Muscholl-Silberhorn A. B, Willems R. J. L, Slooff M. J. H, Harmsen H. J. M, Degener J. E. 2002a; Genogrouping and incidence of virulence factors of Enterococcus faecalis in liver transplant patients differ from blood culture and fecal isolates. J Infect Dis 185:1121–1127 [CrossRef]
    [Google Scholar]
  37. Waar K, Van der Mei H. C, Harmsen H. J. M, Degener J. E, Busscher H. J. 2002b; Adhesion to bile drain materials and physicochemical surface properties of Enterococcus faecalis s trains grown in the presence of bile. Appl Environ Microbiol 68:3855–3858 [CrossRef]
    [Google Scholar]
  38. Waar K, Van der Mei H. C, Harmsen H. J. M, Degener J. E, Busscher H. J. 2002c; Enterococcus faecalis surface proteins determine its adhesion mechanism to bile drain materials. Microbiology 148:1863–1870
    [Google Scholar]
  39. Wilson W. W, Wade M. M, Holman S. C, Champlin F. R. 2001; Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J Microbiol Methods 43:153–164 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28460-0
Loading
/content/journal/micro/10.1099/mic.0.28460-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error