Thermodynamic boundary conditions suggest that a passive transport step suffices for citrate excretion in and Free

Abstract

Excretion of organic acids, e.g. citrate, by anamorphic fungi is a frequent phenomenon in natural habitats and in laboratory cultures. In biotechnological processes for citrate production with extracellular citrate concentrations up to 1 mol l are achieved. Intracellular citrate concentrations are in the millimolar range. Therefore the question arises whether citrate excretion depends on active transport. In this article thermodynamic calculations are presented for citrate excretion by at an extracellular pH of 3 and by at an extracellular pH of 7. From the results of these calculations it is concluded that in both cases a passive transport step suffices for citrate excretion.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28454-0
2006-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/3/887.html?itemId=/content/journal/micro/10.1099/mic.0.28454-0&mimeType=html&fmt=ahah

References

  1. Alvarez-Vasquez F, Gonzalez-Alcon C, Torres N. V. 2000; Metabolism of citric acid production by Aspergillus niger : model definition, steady-state analysis and constrained optimization of citric acid production rate. Biotechnol Bioeng 70:82–108 [CrossRef]
    [Google Scholar]
  2. Ballarin-Denti A, Slayman C. L, Kuroda H. 1994; Small lipid-soluble cations are not membrane voltage probes for Neurospora or Saccharomyces . Biochim Biophys Acta 119043–56 [CrossRef]
    [Google Scholar]
  3. Beeler T, Bruce K, Dunn T. 1997; Regulation of cellular Mg[sup]2+[/sup] by Saccharomyces cerevisiae . Biochim Biophys Acta 1323:310–318 [CrossRef]
    [Google Scholar]
  4. Brune A, Gonzalez P, Goren R, Zehavi U, Echeverria E. 1998; Citrate uptake into tonoplast vesicles from acid lime (Citrus aurantifolia) juice cells. J Membrane Biol 166:197–203 [CrossRef]
    [Google Scholar]
  5. Burgstaller W. 1997; Transport of small ions and molecules across the plasma membrane of filamentous fungi. Crit Rev Microbiol 23:1–46 [CrossRef]
    [Google Scholar]
  6. Burgstaller W, Schinner F. 1993; Leaching of metals by fungi. J Biotechnol 27:91–116 [CrossRef]
    [Google Scholar]
  7. Burkovski A, Krämer R. 2002; Bacterial amino acid transport proteins: occurrence, functions, and significance for biotechnological applications. Appl Microbiol Biotechnol 58:265–274 [CrossRef]
    [Google Scholar]
  8. Bushell M. E, Bull A. T. 1974; Polyamine, magnesium and ribonucleic acid levels in steady-state cultures of the mould Aspergillus nidulans . J Gen Microbiol 81:271–273 [CrossRef]
    [Google Scholar]
  9. Cramer C. L, Davis R. H. 1984; Polyphosphate-cation interaction in the amino acid-containing vacuole of Neurospora crassa . J Biol Chem 259:5152–5157
    [Google Scholar]
  10. Firler H, Gallmetzer M, Burgstaller W, Schinner F. 1998; Citrate efflux in Penicillium simplicissimum : fundamental methods for the in vivo study of efflux kinetics. Food Technol Biotechnol 36:197–201
    [Google Scholar]
  11. Foster J. W. 1949 Chemical Activities of Fungi New York: Academic Press;
    [Google Scholar]
  12. Gadd G. M. 1999; Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92
    [Google Scholar]
  13. Gallmetzer M, Burgstaller W. 2001; Citrate efflux in glucose-limited and glucose-sufficient chemostat culture of Penicillium simplicissimum . Antonie van Leeuwenhoek 79:81–87 [CrossRef]
    [Google Scholar]
  14. Gallmetzer M, Müller B, Burgstaller W. 1998; Net efflux of citrate in Penicillium simplicissimum is mediated by a transport protein. Arch Microbiol 169:353–359 [CrossRef]
    [Google Scholar]
  15. Hesse S. J. A, Ruijter H. J. G, Dijkema C, Visser J. 2002; Intracellular pH homeostasis in the filamentous fungus Aspergillus niger . Eur J Biochem 269:3485–3494 [CrossRef]
    [Google Scholar]
  16. Jernejc K, Legisa M. 2004; A drop of intracellular pH stimulates citric acid accumulation by some strains of Aspergillus niger . J Biotechnol 112:289–297 [CrossRef]
    [Google Scholar]
  17. Keenan K. A, Kirn T, Wisniewski T. 1997; Characterization of calcium and magnesium uptake in the vacuole of Neurospora crassa. In Abstracts of the 19th Fungal Genetics Conference, Asilomar USA abstract no. 125
    [Google Scholar]
  18. Kollmeier M, Dietrich P, Bauer C. S, Horst W. J, Hedrich R. 2001; Aluminium activates a citrate-permeable anion channel in the aluminium-sensitive zone of the maize root apex. A comparison between an aluminium-sensitive and an aluminium-resistant cultivar. Plant Physiol 126:397–410 [CrossRef]
    [Google Scholar]
  19. Konings W. N, Poolman B, Driessen A. J. M. 1992; Can the excretion of metabolites by bacteria be manipulated?. FEMS Microbiol Rev 88:93–108
    [Google Scholar]
  20. Krom B. P, Warner J. B, Konings W. N, Lolkema J. S. 2003; Transporters involved in uptake of di- and tricarboxylates in Bacillus subtilis . Antonie van Leeuwenhoek 84:69–80 [CrossRef]
    [Google Scholar]
  21. Kwack H, Veech R. L. 1992; Citrate: its relation to free magnesium ion concentration and cellular energy. Curr Top Cell Regul 33:185–207
    [Google Scholar]
  22. Levina N. N, Lew R. R, Hyde G. J, Heath I. B. 1995; The roles of Ca[sup]2+[/sup] and plasma membrane ion channels in hyphal tip growth of Neurospora crassa . J Cell Sci 108:3405–3417
    [Google Scholar]
  23. Lichko L. P, Okorokov L. A, Kulaev I. S. 1982; Participation of vacuoles in regulation of levels of K[sup]+[/sup], Mg[sup]2+[/sup] and orthophosphate ions in cytoplasm of the yeast Saccharomyces carlsbergensis . Arch Microbiol 132:289–293 [CrossRef]
    [Google Scholar]
  24. Maris A. J. A. V, Dijken J. P. V, Pronk J. T, Konings W. N. 2004; Microbial export of lactic and 3-hydroxypropanoic acid: implications for industrial fermentation processes. Metab Eng 6:245–255 [CrossRef]
    [Google Scholar]
  25. Netik A, Torres N. V, Riol J.-M, Kubicek C. P. 1997; Uptake and export of citric acid by Aspergillus niger is reciprocally regulated by manganese ions. Biochim Biophys Acta 1326287–294 [CrossRef]
    [Google Scholar]
  26. Nicholls D. G, Ferguson S. J. 2002; The equilibrium distributions of ions, weak acids and weak bases. In Bioenergetics 3 pp  50–52 Amsterdam: Academic Press;
    [Google Scholar]
  27. Okorokov L. A, Lichko L. P, Kholodenko V. P. 1975; Free and bound magnesium in fungi and yeasts. Folia Microbiol 20:460–466 [CrossRef]
    [Google Scholar]
  28. O'Sullivan W. J, Smithers G. W. 1979; Stability constants for biologically important metal-ligand complexes. Methods Enzymol 63:294–337
    [Google Scholar]
  29. Pitt D. E, Bull A. T. 1982; Influence of culture conditions on the physiology and composition of Trichoderma aureoviride . J Gen Microbiol 128:1517–1527
    [Google Scholar]
  30. Prömper C, Schneider R, Weiss H. 1993; The role of the proton-pumping and alternative respiratory chain NADH : ubiquinone oxidoreductases in overflow catabolism of Aspergillus niger . Eur J Biochem 216:223–230 [CrossRef]
    [Google Scholar]
  31. Reich J, Sel'kov E. E. 1981 Energy Metabolism of the Cell: a Theoretical Treatise London: Academic Press;
    [Google Scholar]
  32. Roehr M, Kubicek C. P, Kominek J. 1996; Citric acid. In Biotechnology , vol. 6, Products of Primary Metabolism pp  307–344 Edited by Roehr M. Weinheim: Verlag Chemie (VCH);
    [Google Scholar]
  33. Roos W, Slavik J. 1987; Intracellular pH topography of Penicillium cyclopium protoplasts. Maintenance of delta pH by both passive and active mechanisms. Biochim Biophys Acta 899:67–75 [CrossRef]
    [Google Scholar]
  34. Ruijter G. J. G, Kubicek C. P, Visser J. 2002; Production of organic acids by fungi. In The Mycota ,vol. X, Industrial Applications pp  213–230 Edited by Osiewacz H. D. Berlin: Springer;
    [Google Scholar]
  35. Sillen L. G, Martell A. E. 1964 Stability Constants of Metal Ion Complexes (Special Publication no. 17) London: Chemical Society;
    [Google Scholar]
  36. Slayman C. L. 1965a; Electrical properties of Neurospora crassa . Effects of external cations on the intracellular potential. J Gen Physiol 49:69–92 [CrossRef]
    [Google Scholar]
  37. Slayman C. L. 1965b; Electrical properties of Neurospora crassa . Respiration and the intracellular potential. J Gen Physiol 49:93–116 [CrossRef]
    [Google Scholar]
  38. Slayman C. L, Kaminski P, Stetson D. 1990; Structure and function of fungal plasma-membrane ATPases. In Biochemistry of Cell Walls and Membranes in Fungi pp  299–316 Edited by Kuhn P. J., Trinci A. P. J., Jung M. J., Goosey M. W., Copping L. G. Berlin: Springer;
    [Google Scholar]
  39. Slayman C. L, Sanders D, Bashi E. 1995; The role of vacuolar volume in measured cytoplasmic buffering. In Abstracts of the 10th International Workshop on Plant Membrane Biology, Regensburg, FRG V 05
    [Google Scholar]
  40. White T. C, Marr K. A, Bowden R. A. 1998; Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11:382–402
    [Google Scholar]
  41. Zhang W. H, Ryan P. R, Tyerman S. D. 2004; Citrate-permeable channels in the plasma membrane of cluster roots from White Lupin. Plant Physiol 136:3771–3783 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28454-0
Loading
/content/journal/micro/10.1099/mic.0.28454-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed