1887

Abstract

The evolution of host specialization in pathogens is a topic of considerable interest, particularly since it can represent a decisive step in the emergence of infectious diseases. is an opportunistic fungus capable of infecting a wide variety of hosts, including plants, insects and mammals, although with low virulence. Here the derivation of an strain that exhibits severe host restriction is reported. This strain exhibited a severe diminution or a complete lack of conidial production on a variety of standard agar media and on various plant species. However, it retained its ability to infect insects from various orders and to re-emerge from and adequately conidiate on the insect cadavers as a culmination of the pathogenic life cycle. This strain, demonstrating insect-dependent conidiation, was discovered to be a cysteine/methionine auxotroph due to an inability to reduce sulfate to sulfite. However, other auxotrophs tested for plant and insect host range failed to show insect-dependent conidiation. An association between this specific auxotroph and a decreased host range is shown, emphasizing the role of nutrition in the host–pathogen relationship with respect to host restriction and evolution towards obligate pathogenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28452-0
2006-01-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/1/223.html?itemId=/content/journal/micro/10.1099/mic.0.28452-0&mimeType=html&fmt=ahah

References

  1. Arst, H. N. ( 1968; ). Genetic analysis of the first steps of sulphate metabolism in Aspergillus nidulans. Nature 219, 268–270.[CrossRef]
    [Google Scholar]
  2. Austin, F. E. & Winkler, H. H. ( 1988; ). Proline incorporation into protein by Rickettsia prowazekii during growth in Chinese hamster ovary (CHO-K1) cells. Infect Immun 56, 3167–3172.
    [Google Scholar]
  3. Austin, R. E., Turco, J. & Winkler, H. H. ( 1987; ). Rickettsia prowazekii requires host cell serine and glycine for growth. Infect Immun 55, 240–244.
    [Google Scholar]
  4. Blum, H., Beier, H. & Gross, H. J. ( 1987; ). Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8, 93–99.[CrossRef]
    [Google Scholar]
  5. Breton, A. & Surdin-Kerjan, Y. ( 1977; ). Sulfate uptake in Saccharomyces cerevisiae: biochemical and genetic study. J Bacteriol 132, 224–232.
    [Google Scholar]
  6. Casadevall, A. & Pirofski, L. ( 1999; ). Host–pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect Immun 67, 3703–3713.
    [Google Scholar]
  7. Casadevall, A. & Pirofski, L. ( 2001; ). Host–pathogen interactions: the attributes of virulence. J Infect Dis 184, 337–344.[CrossRef]
    [Google Scholar]
  8. De Vito, P. C. & Dreyfuss, J. ( 1964; ). Metabolic regulation of adenosine triphosphate sulfurylase in yeast. J Bacteriol 88, 1341–1348.
    [Google Scholar]
  9. Garber, E. D. ( 1956; ). A nutrition-inhibition hypothesis of pathogenicity. Am Nat 90, 183–193.[CrossRef]
    [Google Scholar]
  10. Garber, E. D. ( 1960; ). The host as a growth medium. Ann N Y Acad Sci 88, 1187–1194.
    [Google Scholar]
  11. Garber, E. D., Hackett, A. J. & Franklin, R. ( 1952; ). The virulence of biochemical mutants of Klebsiella pneumoniae. Proc Natl Acad Sci U S A 38, 693–697.[CrossRef]
    [Google Scholar]
  12. Gupta, A. & Gopal, M. ( 2002; ). Aflatoxin production by Aspergillus flavus isolates pathogenic to coconut insect pests. World J Microbiol Biotechnol 18, 325–331.[CrossRef]
    [Google Scholar]
  13. Hackman, R. H. & Goldberg, M. ( 1976; ). Comparative chemistry of arthropod cuticular proteins. Comp Biochem Physiol 55B, 201–206.
    [Google Scholar]
  14. Hanzal, R. & Jegorov, A. ( 1991; ). Changes in free amino acid composition in haemolymph of larvae of the wax moth, Galleria mellonella L., during cold acclimation. Comp Biochem Physiol 100A, 957–962.
    [Google Scholar]
  15. Hinnebusch, B. J. ( 1997; ). Bubonic plague: a molecular genetic case history of the emergence of an infectious disease. J Mol Med 75, 645–652.[CrossRef]
    [Google Scholar]
  16. Janssen, P., Maquelin, K., Coopman, R., Tjernberg, I., Bouvet, P., Kersters, K. & Dijkshoorn, L. ( 1997; ). Discrimination of Acinetobacter genomic species by AFLP fingerprinting. Int J Syst Bacteriol 47, 1179–1187.[CrossRef]
    [Google Scholar]
  17. Kumar, V., Singh, G. P. & Babu, A. M. ( 2004; ). Surface ultrastructural studies on the germination, penetration and conidial development of Aspergillus flavus Link : Fries infecting silkworm, Bombyx mori Linn. Mycopathologia 157, 127–135.[CrossRef]
    [Google Scholar]
  18. Manning, M., Snoddy, C. B. & Fromtling, R. A. ( 1984; ). Comparative pathogenicity of auxotrophic mutants of Candida albicans. Can J Microbiol 30, 31–35.[CrossRef]
    [Google Scholar]
  19. Marquis, H., Bouwer, H. G. A., Hinrichs, D. J. & Portnoy, D. A. ( 1993; ). Intracytoplasmic growth and virulence of Listeria monocytogenes auxotrophic mutants. Infect Immun 61, 3756–3760.
    [Google Scholar]
  20. Marzluf, G. A. ( 1997; ). Molecular genetics of sulfur assimilation in filamentous fungi and yeast. Annu Rev Microbiol 51, 73–96.[CrossRef]
    [Google Scholar]
  21. Ono, B., Hazu, T., Yoshida, S., Kawato, T., Shinoda, S., Brzvwczy, J. & Paszewski, A. ( 1999; ). Cysteine biosynthesis in Saccharomyces cerevisiae: a new outlook on pathway and regulation. Yeast 15, 1365–1375.[CrossRef]
    [Google Scholar]
  22. Papa, K. E. ( 1980; ). Dominant aflatoxin mutant of Aspergillus flavus. J Gen Microbiol 118, 279–282.
    [Google Scholar]
  23. Paterson, J. C., Charnley, A. K., Cooper, R. M. & Clarkson, J. M. ( 1994; ). Partial characterization of specific inducers of a cuticle-degrading protease from the insect pathogenic fungus Metarhizium anisopliae. Microbiology 140, 3153–3159.[CrossRef]
    [Google Scholar]
  24. Qiu, J., Zhou, D., Han, Y. & 11 other authors ( 2005; ). Global gene expression profile of Yersinia pestis induced by streptomycin. FEMS Microbiol Lett 243, 489–496.[CrossRef]
    [Google Scholar]
  25. Rademaker, J. L. W., Hoste, B., Louws, F. J., Kersters, K., Swings, J., Vauterin, L., Vauterin, P. & de Bruijn, F. J. ( 2000; ). Comparison of AFLP and rep-PCR genomic fingerprinting with DNA–DNA homology studies: Xanthomonas as a model system. Int J Syst Evol Microbiol 50, 665–677.[CrossRef]
    [Google Scholar]
  26. Rosehart, K., Richards, M. H. & Bidochka, M. J. ( 2002; ). Microsatellite analysis of environmental and clinical isolates of the opportunist fungal pathogen Aspergillus fumigatus. J Med Microbiol 51, 1128–1134.
    [Google Scholar]
  27. Savelkoul, P. H. M., Aarts, H. J. M., de Haas, J., Dijkshoorn, L., Duim, B., Otsen, M., Rademaker, J. L. W., Schouls, L. & Lenstra, J. A. ( 1999; ). Amplified-fragment length polymorphism analysis: the state of an art. J Clin Microbiol 37, 3083–3091.
    [Google Scholar]
  28. Scheffer, R. P. ( 1991; ). Role of toxins in evolution and ecology of plant pathogenic fungi. Experientia 47, 804–811.[CrossRef]
    [Google Scholar]
  29. Segel, I. H., Renosto, F. & Seubert, P. A. ( 1987; ). Sulfate-activating enzymes. Methods Enzymol 143, pp. 334–349. Edited by S. P. Colowick, N. O. Kaplan, W. B. Jakoby & O. W. Griffith. Orlando, FL: Academic Press.
  30. St Leger, R. J., Screen, S. E. & Shams-Pirzadeh, B. ( 2000; ). Lack of host specialization in Aspergillus flavus. Appl Environ Microbiol 66, 320–324.[CrossRef]
    [Google Scholar]
  31. Tanoue, S., Mitarai, S. & Shishido, H. ( 2002; ). Comparative study on the use of solid media: Lowenstein–Jensen and Ogawa in the determination of anti-tuberculosis drug susceptibility. Tuberculosis 82, 63–67.[CrossRef]
    [Google Scholar]
  32. Thomas, M. D. & Leary, J. V. ( 1980; ). Mutagenicity and pathogenicity in Pseudomonas syringae pv. Glycinea (Pseudomonas glycinea). J Gen Microbiol 121, 349–355.
    [Google Scholar]
  33. Warren, J. M. & Covert, S. F. ( 2004; ). Differential expression of pine and Cronartium quercuum f. sp. fusiforme genes in fusiform rust galls. Appl Environ Microbiol 70, 441–451.[CrossRef]
    [Google Scholar]
  34. Wegienek, J. & Reddy, C. A. ( 1982; ). Nutritional and metabolic features of Eubacterium suis. J Clin Microbiol 15, 895–901.
    [Google Scholar]
  35. White, T. J., Bruns, T., Lee, S. & Taylor, J. ( 1990; ). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a Guide to Methods and Applications, pp. 315–322. Edited by M. A. Innis, G. H. Gelfand, J. J. Sninsky & T. J. White. San Diego, CA: Academic Press.
  36. Wooff, E., Michell, S. L., Gordon, S. V., Chambers, M. A., Bardarov, S., Jacobs, W. R., Jr, Hewinson, R. G. & Wheeler, P. R. ( 2002; ). Functional genomics reveals the sole sulphate transporter of the Mycobacterium tuberculosis complex and its relevance to the acquisition of sulphur in vivo. Mol Microbiol 43, 653–663.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28452-0
Loading
/content/journal/micro/10.1099/mic.0.28452-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error