1887

Abstract

The evolution of host specialization in pathogens is a topic of considerable interest, particularly since it can represent a decisive step in the emergence of infectious diseases. is an opportunistic fungus capable of infecting a wide variety of hosts, including plants, insects and mammals, although with low virulence. Here the derivation of an strain that exhibits severe host restriction is reported. This strain exhibited a severe diminution or a complete lack of conidial production on a variety of standard agar media and on various plant species. However, it retained its ability to infect insects from various orders and to re-emerge from and adequately conidiate on the insect cadavers as a culmination of the pathogenic life cycle. This strain, demonstrating insect-dependent conidiation, was discovered to be a cysteine/methionine auxotroph due to an inability to reduce sulfate to sulfite. However, other auxotrophs tested for plant and insect host range failed to show insect-dependent conidiation. An association between this specific auxotroph and a decreased host range is shown, emphasizing the role of nutrition in the host–pathogen relationship with respect to host restriction and evolution towards obligate pathogenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28452-0
2006-01-01
2020-04-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/1/223.html?itemId=/content/journal/micro/10.1099/mic.0.28452-0&mimeType=html&fmt=ahah

References

  1. Arst H. N. 1968; Genetic analysis of the first steps of sulphate metabolism in Aspergillus nidulans . Nature219:268–270[CrossRef]
    [Google Scholar]
  2. Austin F. E, Winkler H. H. 1988; Proline incorporation into protein by Rickettsia prowazekii during growth in Chinese hamster ovary (CHO-K1) cells. Infect Immun56:3167–3172
    [Google Scholar]
  3. Austin R. E, Turco J, Winkler H. H. 1987; Rickettsia prowazekii requires host cell serine and glycine for growth. Infect Immun55:240–244
    [Google Scholar]
  4. Blum H, Beier H, Gross H. J. 1987; Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis8:93–99[CrossRef]
    [Google Scholar]
  5. Breton A, Surdin-Kerjan Y. 1977; Sulfate uptake in Saccharomyces cerevisiae : biochemical and genetic study. J Bacteriol132:224–232
    [Google Scholar]
  6. Casadevall A, Pirofski L. 1999; Host–pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect Immun67:3703–3713
    [Google Scholar]
  7. Casadevall A, Pirofski L. 2001; Host–pathogen interactions: the attributes of virulence. J Infect Dis184:337–344[CrossRef]
    [Google Scholar]
  8. De Vito P. C, Dreyfuss J. 1964; Metabolic regulation of adenosine triphosphate sulfurylase in yeast. J Bacteriol88:1341–1348
    [Google Scholar]
  9. Garber E. D. 1956; A nutrition-inhibition hypothesis of pathogenicity. Am Nat90:183–193[CrossRef]
    [Google Scholar]
  10. Garber E. D. 1960; The host as a growth medium. Ann N Y Acad Sci88:1187–1194
    [Google Scholar]
  11. Garber E. D, Hackett A. J, Franklin R. 1952; The virulence of biochemical mutants of Klebsiella pneumoniae . Proc Natl Acad Sci U S A38:693–697[CrossRef]
    [Google Scholar]
  12. Gupta A, Gopal M. 2002; Aflatoxin production by Aspergillus flavus isolates pathogenic to coconut insect pests. World J Microbiol Biotechnol18:325–331[CrossRef]
    [Google Scholar]
  13. Hackman R. H, Goldberg M. 1976; Comparative chemistry of arthropod cuticular proteins. Comp Biochem Physiol55B:201–206
    [Google Scholar]
  14. Hanzal R, Jegorov A. 1991; Changes in free amino acid composition in haemolymph of larvae of the wax moth, Galleria mellonella L., during cold acclimation. Comp Biochem Physiol100A:957–962
    [Google Scholar]
  15. Hinnebusch B. J. 1997; Bubonic plague: a molecular genetic case history of the emergence of an infectious disease. J Mol Med75:645–652[CrossRef]
    [Google Scholar]
  16. Janssen P, Maquelin K, Coopman R, Tjernberg I, Bouvet P, Kersters K, Dijkshoorn L. 1997; Discrimination of Acinetobacter genomic species by AFLP fingerprinting. Int J Syst Bacteriol47:1179–1187[CrossRef]
    [Google Scholar]
  17. Kumar V, Singh G. P, Babu A. M. 2004; Surface ultrastructural studies on the germination, penetration and conidial development of Aspergillus flavus Link : Fries infecting silkworm, Bombyx mori Linn. Mycopathologia157:127–135[CrossRef]
    [Google Scholar]
  18. Manning M, Snoddy C. B, Fromtling R. A. 1984; Comparative pathogenicity of auxotrophic mutants of Candida albicans . Can J Microbiol30:31–35[CrossRef]
    [Google Scholar]
  19. Marquis H, Bouwer H. G. A, Hinrichs D. J, Portnoy D. A. 1993; Intracytoplasmic growth and virulence of Listeria monocytogenes auxotrophic mutants. Infect Immun61:3756–3760
    [Google Scholar]
  20. Marzluf G. A. 1997; Molecular genetics of sulfur assimilation in filamentous fungi and yeast. Annu Rev Microbiol51:73–96[CrossRef]
    [Google Scholar]
  21. Ono B, Hazu T, Yoshida S, Kawato T, Shinoda S, Brzvwczy J, Paszewski A. 1999; Cysteine biosynthesis in Saccharomyces cerevisiae : a new outlook on pathway and regulation. Yeast15:1365–1375[CrossRef]
    [Google Scholar]
  22. Papa K. E. 1980; Dominant aflatoxin mutant of Aspergillus flavus . J Gen Microbiol118:279–282
    [Google Scholar]
  23. Paterson J. C, Charnley A. K, Cooper R. M, Clarkson J. M. 1994; Partial characterization of specific inducers of a cuticle-degrading protease from the insect pathogenic fungus Metarhizium anisopliae . Microbiology140:3153–3159[CrossRef]
    [Google Scholar]
  24. Qiu J, Zhou D, Han Y.11 other authors 2005; Global gene expression profile of Yersinia pestis induced by streptomycin. FEMS Microbiol Lett243:489–496[CrossRef]
    [Google Scholar]
  25. Rademaker J. L. W, Hoste B, Louws F. J, Kersters K, Swings J, Vauterin L, Vauterin P, de Bruijn F. J. 2000; Comparison of AFLP and rep-PCR genomic fingerprinting with DNA–DNA homology studies: Xanthomonas as a model system. Int J Syst Evol Microbiol50:665–677[CrossRef]
    [Google Scholar]
  26. Rosehart K, Richards M. H, Bidochka M. J. 2002; Microsatellite analysis of environmental and clinical isolates of the opportunist fungal pathogen Aspergillus fumigatus . J Med Microbiol51:1128–1134
    [Google Scholar]
  27. Savelkoul P. H. M, Aarts H. J. M, Dijkshoorn L, Duim B, Otsen M, Rademaker J. L. W, Schouls L, Lenstra J. A, de Haas J. 1999; Amplified-fragment length polymorphism analysis: the state of an art. J Clin Microbiol37:3083–3091
    [Google Scholar]
  28. Scheffer R. P. 1991; Role of toxins in evolution and ecology of plant pathogenic fungi. Experientia47:804–811[CrossRef]
    [Google Scholar]
  29. Segel I. H, Renosto F, Seubert P. A. 1987; Sulfate-activating enzymes. Methods Enzymol143 pp 334–349 Edited by Colowick S. P., Kaplan N. O., Jakoby W. B., Griffith O. W.. Orlando, FL: Academic Press;
    [Google Scholar]
  30. St Leger R. J, Screen S. E, Shams-Pirzadeh B. 2000; Lack of host specialization in Aspergillus flavus . Appl Environ Microbiol66:320–324[CrossRef]
    [Google Scholar]
  31. Tanoue S, Mitarai S, Shishido H. 2002; Comparative study on the use of solid media: Lowenstein–Jensen and Ogawa in the determination of anti-tuberculosis drug susceptibility. Tuberculosis82:63–67[CrossRef]
    [Google Scholar]
  32. Thomas M. D, Leary J. V. 1980; Mutagenicity and pathogenicity in Pseudomonas syringae pv. Glycinea (Pseudomonas glycinea) . J Gen Microbiol121:349–355
    [Google Scholar]
  33. Warren J. M, Covert S. F. 2004; Differential expression of pine and Cronartium quercuum fsp fusiforme genes in fusiform rust galls. Appl Environ Microbiol70:441–451[CrossRef]
    [Google Scholar]
  34. Wegienek J, Reddy C. A. 1982; Nutritional and metabolic features of Eubacterium suis . J Clin Microbiol15:895–901
    [Google Scholar]
  35. White T. J, Bruns T, Lee S, Taylor J. 1990; Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a Guide to Methods and Applications pp 315–322 Edited by Innis M. A., Gelfand G. H., Sninsky J. J., White T. J.. San Diego, CA: Academic Press;
    [Google Scholar]
  36. Wooff E, Michell S. L, Gordon S. V, Chambers M. A, Bardarov S, Wheeler P. R, Jacobs W. R., Jr, Hewinson R. G. 2002; Functional genomics reveals the sole sulphate transporter of the Mycobacterium tuberculosis complex and its relevance to the acquisition of sulphur in vivo . Mol Microbiol43:653–663[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28452-0
Loading
/content/journal/micro/10.1099/mic.0.28452-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error