1887

Abstract

Pneumococci display large zinc metalloproteinases on the surface, including the IgA protease, which cleaves human IgA1 in the hinge region, the ZmpC proteinase, which cleaves human matrix metalloproteinase 9 (MMP-9), and two other proteinases, ZmpB and ZmpD, whose substrates have not yet been identified. Surface metalloproteinases are antigenic and have been linked to virulence. The genes encoding these proteinases reside in three distinct loci: two loci specific for and , and a third, the locus, containing and . Data obtained by this and other groups have shown that pneumococcal metalloproteinase genes are transcribed and yield mature and enzymatically active proteins. Since the presence of the four proteinase genes is variable in the pneumococcal strains whose genomes have been sequenced, the presence of these genes in a collection of 218 pneumococcal isolates, mostly from invasive disease, was investigated. The data showed that and were present in all the isolates examined, while and were present in a variable proportion of the isolates (in 18 and 49 %, respectively). Interestingly, isolates carrying both and were found to belong mainly to two serotypes (sts), 8 and 11A. By molecular typing, st 8 and st 11A isolates appeared to belong to the same clonal cluster. The presence of these two additional metalloproteinases could contribute to the fitness of particular pneumococcal clones.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28417-0
2006-02-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/2/313.html?itemId=/content/journal/micro/10.1099/mic.0.28417-0&mimeType=html&fmt=ahah

References

  1. Bergé, M., Garcia, P., Iannelli, F., Prère, M. F., Granadel, C., Polissi, A. & Claverys, J. P. ( 2001; ). The puzzle of zmpB and extensive chain formation, autolysis defect and non-translocation. Mol Microbiol 39, 1651–1660.[CrossRef]
    [Google Scholar]
  2. Blue, C. E., Paterson, G. K., Kerr, A., Bergé, M., Claverys, J. P. & Mitchell, T. J. ( 2003; ). ZmpB, a novel virulence factor of Streptococcus pneumoniae that induces tumor necrosis factor alpha production in the respiratory tract. Infect Immun 71, 4925–4935.[CrossRef]
    [Google Scholar]
  3. Bogaert, D., de Groot, R. & Hermans, P. W. M. ( 2004; ). Streptococcus pneumoniae colonization: the key to pneumococcal disease. Lancet Infect Dis 4, 144–154.[CrossRef]
    [Google Scholar]
  4. Chapuy-Regaud, S., Ogunniyi, A. D., Diallo, N., Huet, Y., Desnottes, J. F., Paton, J. C., Escaich, S. & Trombe, M. C. ( 2003; ). RegR, a global LacI/GalR family regulator, modulates virulence and competence in Streptococcus pneumoniae. Infect Immun 71, 2615–2625.[CrossRef]
    [Google Scholar]
  5. Chiavolini, D., Memmi, G., Maggi, T., Iannelli, F., Pozzi, G. & Oggioni, M. R. ( 2003; ). The three extra-cellular zinc metalloproteinases of Streptococcus pneumoniae have a different impact on virulence in mice. BMC Microbiol 3, 14.[CrossRef]
    [Google Scholar]
  6. Dicuonzo, G., Gherardi, G., Gertz, R. E., D'Ambrosio, F., Goglio, A., Lorino, G., Recchia, S., Pantosti, A. & Beall, B. ( 2002; ). Genotypes of invasive pneumococcal isolates recently recovered from Italian patients. J Clin Microbiol 40, 3660–3665.[CrossRef]
    [Google Scholar]
  7. Dopazo, J., Mendoza, A., Herrero, J. & 13 other authors ( 2001; ). Annotated draft genomic sequence from Streptococcus pneumoniae type 19F clinical isolate. Microb Drug Resist 7, 99–125.[CrossRef]
    [Google Scholar]
  8. Enright, M. & Spratt, B. ( 1998; ). A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease. Microbiology 144, 3049–3060.[CrossRef]
    [Google Scholar]
  9. Gertz, R. E., McEllistrem, C., Boxrud, D. J. & 8 other authors ( 2003; ). Clonal distribution of invasive pneumococcal isolates from children and selected adults in the United States prior to 7-valent conjugate vaccine introduction. J Clin Microbiol 41, 4194–4216.[CrossRef]
    [Google Scholar]
  10. Gillespie, S. H. ( 1989; ). Aspects of pneumococcal infection including bacterial virulence, host response and vaccination. J Med Microbiol 28, 237–248.[CrossRef]
    [Google Scholar]
  11. Hakenbeck, R., Balmelle, N., Weber, B., Gardes, C., Keck, W. & de Saizieu, A. ( 2001; ). Mosaic genes and mosaic chromosomes: intra- and interspecies genomic variation of Streptococcus pneumoniae. Infect Immun 69, 2477–2486.[CrossRef]
    [Google Scholar]
  12. Hausdorff, W. P., Bryant, J., Paradiso, P. R. & Siber, G. R. ( 2000; ). Which pneumococcal serogroups cause the most invasive disease: implications for conjugate vaccine formulation and use, part I. Clin Infect Dis 30, 100–121.[CrossRef]
    [Google Scholar]
  13. Hava, D. L. & Camilli, A. ( 2002; ). Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol Microbiol 45, 1389–1406.
    [Google Scholar]
  14. Hoskins, J., Alborn, W. E., Arnold, J. & 36 other authors ( 2001; ). Genome of the bacterium Streptococcus pneumoniae strain R6. J Bacteriol 183, 5709–5717.[CrossRef]
    [Google Scholar]
  15. Iannelli, F., Oggioni, M. R. & Pozzi, G. ( 2002; ). Allelic variation in the highly polymorphic locus pspC of Streptococcus pneumoniae. Gene 284, 63–71.[CrossRef]
    [Google Scholar]
  16. Iannelli, F., Chiavolini, D., Ricci, S., Oggioni, M. R. & Pozzi, G. ( 2004; ). Pneumococcal surface protein C (PspC) contributes to sepsis caused by Streptococcus pneumoniae. Infect Immun 72, 3077–3080.[CrossRef]
    [Google Scholar]
  17. Jefferies, J. M. C., Smith, A., Clarke, S. C., Dowson, C. & Mitchell, T. J. ( 2004; ). Genetic analysis of diverse disease-causing pneumococci indicates high level of diversity within serotypes and capsule switching. J Clin Microbiol 42, 5681–5688.[CrossRef]
    [Google Scholar]
  18. Kilian, M., Mestecky, J., Kulhavy, R., Tomana, M. & Butler, W. T. ( 1980; ). IgA1 proteases from Haemophilus influenzae, Streptococcus pneumoniae, Neisseria meningitidis and Streptococcus sanguis: comparative immunochemical studies. J Immunol 124, 2596–2600.
    [Google Scholar]
  19. Kilian, M., Reinholdt, J., Lomholt, H., Poulsen, K. & Frandsen, E. V. G. ( 1996; ). Biological significance of IgA1 proteases in bacterial colonization and pathogenesis: critical evaluation of experimental evidence. APMIS 104, 321–338.[CrossRef]
    [Google Scholar]
  20. Livak, K. J. & Schmittgen, T. D. ( 2001; ). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408.[CrossRef]
    [Google Scholar]
  21. McCawley, L. J. & Matrisian, L. M. ( 2000; ). Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol Med Today 6, 149–156.[CrossRef]
    [Google Scholar]
  22. Mitchell, T. J. ( 2000; ). Virulence factors and the pathogenesis of disease caused by Streptococcus pneumoniae. Res Microbiol 151, 413–419.[CrossRef]
    [Google Scholar]
  23. Oggioni, M. R. & Pozzi, G. ( 2001; ). Comparative genomics for identification of clone-specific sequence blocks in Streptococcus pneumoniae. FEMS Microbiol Rev 200, 137–143.[CrossRef]
    [Google Scholar]
  24. Oggioni, M. R., Memmi, G., Maggi, T., Chiavolini, D., Iannelli, F. & Pozzi, G. ( 2003; ). Pneumococcal zinc metalloproteinase ZmpC cleaves human matrix metalloproteinase 9 and is a virulence factor in experimental pneumonia. Mol Microbiol 49, 795–805.
    [Google Scholar]
  25. Oggioni, M. R., Iannelli, F., Ricci, S., Chiavolini, D., Parigi, R., Trappetti, C., Claverys, J.-P. & Pozzi, G. ( 2004; ). Antibacterial activity of a competence stimulating peptide in experimental sepsis caused by Streptococcus pneumoniae. Antimicrob Agents Chemother 48, 4725–4732.[CrossRef]
    [Google Scholar]
  26. Pantosti, A., D'Ambrosio, F., Tarasi, A., Recchia, S., Orefici, G. & Mastrantonio, P. ( 2000; ). Antibiotic susceptibility and serotype distribution of Streptococcus pneumoniae causing meningitis in Italy, 1997–1999. Clin Infect Dis 31, 1373–1379.[CrossRef]
    [Google Scholar]
  27. Pantosti, A., Boccia, D., D'Ambrosio, F., Recchia, S., Orefici, G. & Moro, M. L. ( 2003; ). Inferring the potential success of pneumococcal vaccination in Italy: serotypes and antibiotic resistance of Streptococcus pneumoniae isolates from invasive diseases. Microb Drug Resist 9, 61–68.
    [Google Scholar]
  28. Paton, J. C., Andrew, P. W., Boulnois, G. J. & Mitchell, T. J. ( 1993; ). Molecular analysis of the pathogenicity of Streptococcus pneumoniae: the role of pneumococcal proteins. Annu Rev Microbiol 47, 89–115.[CrossRef]
    [Google Scholar]
  29. Petrosillo, N., Pantosti, A., Bordi, E., Spanò, A., Del Grosso, M., Tallarida, B. & Ippolito, G. ( 2002; ). Prevalence, determinants, and molecular epidemiology of Streptococcus pneumoniae isolates colonizing the nasopharynx of healthy children in Rome. Eur J Clin Microbiol Infect Dis 21, 181–188.[CrossRef]
    [Google Scholar]
  30. Polissi, A., Pontiggia, A., Feger, G., Altieri, M., Mottl, H., Ferrari, L. & Simon, D. ( 1998; ). Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect Immun 66, 5620–5629.
    [Google Scholar]
  31. Poulsen, K., Reinholdt, J. & Kilian, M. ( 1996; ). Characterization of the Streptococcus pneumoniae immunoglobulin A1 protease gene (iga) and its translation product. Infect Immun 64, 3957–3966.
    [Google Scholar]
  32. Poulsen, K., Reinholdt, J., Jespersgaard, C., Boye, K., Brown, T. A., Hauge, M. & Kilian, M. ( 1998; ). A comprehensive genetic study of streptococcal immunoglobulin A1 proteases: evidence for recombination within and between species. Infect Immun 66, 181–190.
    [Google Scholar]
  33. Romanello, V., Marcacci, M., Molin, F. D., Maschioni, M., Censini, S., Covacci, A., Baritussio, A. G., Montecucco, C. & Tonello, F. ( 2006; ). Cloning, expression, purification, and characterization of Streptococcus pneumoniae IgA1 protease. Protein Expr Purif 45, 142–149.[CrossRef]
    [Google Scholar]
  34. Tenover, F. C., Arbeit, R. D., Goering, R. V., Mickelsen, P. A., Murray, B. E., Persing, D. H. & Swaminathan, B. ( 1995; ). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33, 2233–2239.
    [Google Scholar]
  35. Tettelin, H. & Hollingshead, S. K. ( 2004; ). Comparative genomics of S. pneumoniae: intra-strain diversity and genome plasticity. In The Pneumococcus, pp 15–29. Edited by E. I. Tuomanen. Washington, DC: American Society for Microbiology.
  36. Tettelin, H., Nelson, K. E., Paulsen, I. T. & 36 other authors ( 2001; ). Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293, 498–506.[CrossRef]
    [Google Scholar]
  37. Wani, J. H., Gilbert, J. V., Plaut, A. G. & Weiser, J. N. ( 1996; ). Identification, cloning, and sequencing of the immunoglobulin A1 protease gene of Streptococcus pneumoniae. Infect Immun 64, 3967–3974.
    [Google Scholar]
  38. Weiser, J. N., Bae, D., Fasching, C., Scamurra, R. W., Ratner, A. J. & Janoff, E. N. ( 2003; ). Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proc Natl Acad Sci U S A 100, 4215–4220.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28417-0
Loading
/content/journal/micro/10.1099/mic.0.28417-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error