1887

Abstract

Lactic acid bacteria (LAB) are frequently encountered inhabitants of the human intestinal tract. A protective layer of mucus covers the epithelial cells of the intestine, offering an attachment site for these bacteria. In this study bioinformatics tools were used to identify and characterize proteins containing one type of mucus-binding domain, called MUB, that is postulated to play an important role in the adherence of LAB to this mucus layer. By searching in all protein databases 48 proteins containing at least one of these MUB domains in nine LAB species were identified. These MUB domains varied in size, ranging from approximately 100 to more than 200 residues per domain. Complete MUB domains were found exclusively in LAB. The number of MUB domains present in a single protein varied from 1 to 15. In some cases, orthologous proteins in closely related species contained a different number of domains, indicating that repeats of the domain undergo rapid duplication and deletion. Proteins containing the MUB domain were often encoded by gene clusters that encode multiple extracellular proteins. In addition to one or more copies of the MUB domain, many of these proteins contained other domains that are predicted to be involved in binding to and degradation of extracellular components. These findings strongly suggest that the MUB domain is an LAB-specific functional unit that performs its task in various domain contexts and could fulfil an important role in host–microbe interactions in the gastrointestinal tract.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28415-0
2006-01-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/1/273.html?itemId=/content/journal/micro/10.1099/mic.0.28415-0&mimeType=html&fmt=ahah

References

  1. Agrawal, V. & Kishan, K. V. ( 2002; ). Promiscuous binding nature of SH3 domains to their target proteins. Protein Pept Lett 9, 185–193.[CrossRef]
    [Google Scholar]
  2. Altermann, E., Russell, W. M., Azcarate-Peril, M. A. & 11 other authors ( 2005; ). Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci U S A 102, 3906–3912.[CrossRef]
    [Google Scholar]
  3. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  4. Aryanta, R. W., Fleet, G. H. & Buckle, K. A. ( 1991; ). The occurrence and growth of microorganisms during the fermentation of fish sausage. Int J Food Microbiol 13, 143–155.[CrossRef]
    [Google Scholar]
  5. Bailey, T. L. & Elkan, C. ( 1994; ). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2, 28–36.
    [Google Scholar]
  6. Bairoch, A., Apweiler, R., Wu, C. H. & 12 other authors ( 2005; ). The Universal Protein Resource (UniProt). Nucleic Acids Res 33, D154–D159.
    [Google Scholar]
  7. Bateman, A., Coin, L., Durbin, R. & 10 other authors ( 2004; ). The Pfam protein families database. Nucleic Acids Res 32, D138–D141.[CrossRef]
    [Google Scholar]
  8. Bayliss, C. E. & Houston, A. P. ( 1984; ). Characterization of plant polysaccharide- and mucin-fermenting anaerobic bacteria from human feces. Appl Environ Microbiol 48, 626–632.
    [Google Scholar]
  9. Boekhorst, J., Siezen, R. J., Zwahlen, M. C. & 7 other authors ( 2004; ). The complete genomes of Lactobacillus plantarum and Lactobacillus johnsonii reveal extensive differences in chromosome organization and gene content. Microbiology 150, 3601–3611.[CrossRef]
    [Google Scholar]
  10. Boekhorst, J., de Been, M. W., Kleerebezem, M. & Siezen, R. J. ( 2005; ). Genome-wide detection and analysis of cell wall-bound proteins with LPxTG-like sorting motifs. J Bacteriol 187, 4928–4934.[CrossRef]
    [Google Scholar]
  11. Bolotin, A., Wincker, P., Mauger, S., Jaillon, O., Malarme, K., Weissenbach, J., Ehrlich, S. D. & Sorokin, A. ( 2001; ). The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11, 731–753.[CrossRef]
    [Google Scholar]
  12. Bork, P. ( 1991; ). Shuffled domains in extracellular proteins. FEBS Lett 286, 47–54.[CrossRef]
    [Google Scholar]
  13. Coconnier, M. H., Klaenhammer, T. R., Kerneis, S., Bernet, M. F. & Servin, A. L. ( 1992; ). Protein-mediated adhesion of Lactobacillus acidophilus BG2FO4 on human enterocyte and mucus-secreting cell lines in culture. Appl Environ Microbiol 58, 2034–2039.
    [Google Scholar]
  14. Conway, P. L. & Kjelleberg, S. ( 1989; ). Protein-mediated adhesion of Lactobacillus fermentum strain 737 to mouse stomach squamous epithelium. J Gen Microbiol 135, 1175–1186.
    [Google Scholar]
  15. Dandekar, T., Snel, B., Huynen, M. & Bork, P. ( 1998; ). Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem Sci 23, 324–328.[CrossRef]
    [Google Scholar]
  16. Dekker, J., Rossen, J. W., Buller, H. A. & Einerhand, A. W. ( 2002; ). The MUC family: an obituary. Trends Biochem Sci 27, 126–131.[CrossRef]
    [Google Scholar]
  17. Doolittle, R. F. & Bork, P. ( 1993; ). Evolutionarily mobile modules in proteins. Sci Am 269, 50–56.
    [Google Scholar]
  18. Durbin, R., Eddy, S., Krogh, A. & Mitchison, G. ( 1998; ). Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge: Cambridge University Press.
  19. Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E. & Relman, D. A. ( 2005; ). Diversity of the human intestinal microbial flora. Science 308, 1635–1638.[CrossRef]
    [Google Scholar]
  20. Edgar, R. C. ( 2004; ). muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113.[CrossRef]
    [Google Scholar]
  21. Ekman, D., Bjorklund, A. K., Frey-Skott, J. & Elofsson, A. ( 2005; ). Multi-domain proteins in the three kingdoms of life: orphan domains and other unassigned regions. J Mol Biol 348, 231–243.[CrossRef]
    [Google Scholar]
  22. Fischetti, V. A. ( 2000; ). In Gram-Positive Pathogens, pp. 11–24. Washington, DC: American Society for Microbiology.
  23. Gough, J., Karplus, K., Hughey, R. & Chothia, C. ( 2001; ). Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol 313, 903–919.[CrossRef]
    [Google Scholar]
  24. Hooper, L. V. & Gordon, J. I. ( 2001; ). Commensal host–bacterial relationships in the gut. Science 292, 1115–1118.[CrossRef]
    [Google Scholar]
  25. Kleerebezem, M., Boekhorst, J., van Kranenburg, R. & 17 other authors ( 2003; ). Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100, 1990–1995.[CrossRef]
    [Google Scholar]
  26. Kobe, B. & Kajava, A. V. ( 2001; ). The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11, 725–732.[CrossRef]
    [Google Scholar]
  27. Letunic, I., Copley, R. R., Schmidt, S., Ciccarelli, F. D., Doerks, T., Schultz, J., Ponting, C. P. & Bork, P. ( 2004; ). smart 4.0: towards genomic data integration. Nucleic Acids Res 32, D142–D144.[CrossRef]
    [Google Scholar]
  28. Marcotte, E. M., Pellegrini, M., Ng, H. L., Rice, D. W., Yeates, T. O. & Eisenberg, D. ( 1999; ). Detecting protein function and protein–protein interactions from genome sequences. Science 285, 751–753.[CrossRef]
    [Google Scholar]
  29. McGuffin, L. J., Bryson, K. & Jones, D. T. ( 2000; ). The psipred protein structure prediction server. Bioinformatics 16, 404–405.[CrossRef]
    [Google Scholar]
  30. Navarre, W. W. & Schneewind, O. ( 1999; ). Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63, 174–229.
    [Google Scholar]
  31. Overbeek, R., Larsen, N., Walunas, T. & 19 other authors ( 2003; ). The ergo genome analysis and discovery system. Nucleic Acids Res 31, 164–171.[CrossRef]
    [Google Scholar]
  32. Pretzer, G., Snel, J., Molenaar, D. & 7 other authors ( 2005; ). Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum. J Bacteriol 187, 6128–6136.[CrossRef]
    [Google Scholar]
  33. Pridmore, D., Berger, B., Desiere, F. & 12 other authors ( 2004; ). The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci U S A 101, 2512–2517.[CrossRef]
    [Google Scholar]
  34. Reid, G., Sanders, M. E., Gaskins, H. R. & 7 other authors ( 2003; ). New scientific paradigms for probiotics and prebiotics. J Clin Gastroenterol 37, 105–118.[CrossRef]
    [Google Scholar]
  35. Rice, P., Longden, I. & Bleasby, A. ( 2000; ). emboss: the European Molecular Biology Open Software Suite. Trends Genet 16, 276–277.[CrossRef]
    [Google Scholar]
  36. Roos, S. & Jonsson, H. ( 2002; ). A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiology 148, 433–442.
    [Google Scholar]
  37. SantaLucia, J., Jr ( 1998; ). A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A 95, 1460–1465.[CrossRef]
    [Google Scholar]
  38. Servin, A. L. ( 2004; ). Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev 28, 405–440.[CrossRef]
    [Google Scholar]
  39. Soding, J. ( 2005; ). Protein homology detection by HMM–HMM comparison. Bioinformatics 21, 951–960.[CrossRef]
    [Google Scholar]
  40. Sonnenburg, J. L., Xu, J., Leip, D. D., Chen, C. H., Westover, B. P., Weatherford, J., Buhler, J. D. & Gordon, J. I. ( 2005; ). Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307, 1955–1959.[CrossRef]
    [Google Scholar]
  41. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  42. Ton-That, H., Marraffini, L. A. & Schneewind, O. ( 2004; ). Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochim Biophys Acta 1694, 269–278.[CrossRef]
    [Google Scholar]
  43. von Heijne, G. ( 1989; ). The structure of signal peptides from bacterial lipoproteins. Protein Eng 2, 531–534.[CrossRef]
    [Google Scholar]
  44. Zoetendal, E. G., von Wright, A., Vilpponen-Salmela, T., Ben-Amor, K., Akkermans, A. D. & de Vos, W. M. ( 2002; ). Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol 68, 3401–3407.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28415-0
Loading
/content/journal/micro/10.1099/mic.0.28415-0
Loading

Data & Media loading...

Supplementary Table A 

view as Excel file 

EXCEL

Supplementary Table B 

view as Excel file 

EXCEL

Supplementary Figure A 

view as text file 

TEXT

Supplementary Figure B 

view as text file 

TEXT

Supplementary Figure C 

view as text file 

TEXT

Supplementary File 1 

TEXT
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error