1887

Abstract

Although is a leading cause of food-borne illness, little is known about the mechanisms by which this pathogen mediates prolonged environmental survival or host cell virulence. Although these behaviours represent distinct phenotypes, they share a common requirement of an immobilized state. In order to understand the cellular mechanisms that facilitate a surface-associated lifestyle, transcriptional and translational expression profiles were determined for sessile and planktonic . These investigations indicate that the immobilized bacteria undergo a shift in cellular priorities away from metabolic, motility and protein synthesis capabilities towards emphasis on iron uptake, oxidative stress defence and membrane transport. This pattern of expression partially overlaps those reported for Campylobacter during host colonization, as well as for other species of bacteria involved in biofilms, highlighting common adaptive responses to the conserved challenges within each of these phenotypes. The adaptation of Campylobacter to immobilized growth may represent a quasi-differentiated state that functions as a foundation for further specialization towards phenotypes such as biofilm formation or host cell virulence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28405-0
2006-02-01
2020-08-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/2/567.html?itemId=/content/journal/micro/10.1099/mic.0.28405-0&mimeType=html&fmt=ahah

References

  1. Altekruse S. F, Stern N. J, Fields P. I, Swerdlow D. L. 1999; Campylobacter jejuni – an emerging foodborne pathogen. Emerg Infect Dis5:28–35[CrossRef]
    [Google Scholar]
  2. Ardehali R, Shi L, Janatova J, Mohammad S. F, Burns G. L. 2002; The effect of apo-transferrin on bacterial adhesion to biomaterials. Artif Organs26:512–520[CrossRef]
    [Google Scholar]
  3. Baillon M. L, Ketley J. M, Constantinidou C, Penn C. W, van Vliet A. H. 1999; An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni . J Bacteriol181:4798–4804
    [Google Scholar]
  4. Beloin C, Ghigo J. M. 2005; Finding gene-expression patterns in bacterial biofilms. Trends Microbiol13:16–19[CrossRef]
    [Google Scholar]
  5. Berndtson E, Danielsson-Tham M. L, Engvall A. 1996; Campylobacter incidence on a chicken farm and the spread of Campylobacter during the slaughter process. Int J Food Microbiol32:35–47[CrossRef]
    [Google Scholar]
  6. Bolton F. J, Coates D, Hutchinson D. N, Godfree A. F. 1987; A study of thermophilic campylobacters in a river system. J Appl Bacteriol62:167–176[CrossRef]
    [Google Scholar]
  7. Bradford M. M. 1976; A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254[CrossRef]
    [Google Scholar]
  8. Carrillo C. D, Taboada E, Nash J. H. E.15 other authors 2004; Genome-wide expression analyses of Campylobacter jejuni NCTC 11168 reveals coordinate regulation of motility and virulence by flhA . J Biol Chem279:20327–20338[CrossRef]
    [Google Scholar]
  9. de Melo M. A., Pechere J. C. 1990; Identification of Campylobacter jejuni surface proteins that bind to eucaryotic cells in vitro . Infect Immun58:1749–1756
    [Google Scholar]
  10. Garcia-Sanchez S, Aubert S, Iraqui I, Janbon G, Ghigo J. M, d'Enfert C. 2004; Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell3:536–545[CrossRef]
    [Google Scholar]
  11. Golovlev E. L. 2002; The mechanism of formation of Pseudomonas aeruginosa biofilm, a type of structured population. Microbiology71:249–254[CrossRef]
    [Google Scholar]
  12. Görg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W. 2000; The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis6:1037–1053
    [Google Scholar]
  13. Holmes K, Mulholland F, Pearson B. M, Pin C, McNichol-Kennedy J, Ketely J. M, Wells J. M. 2005; Campylobacter jejuni gene expression in response to iron limitation and the role of Fur. Microbiology151:243–257[CrossRef]
    [Google Scholar]
  14. Jones K. 2001; The Campylobacter conundrum. Trends Microbiol9:365–366[CrossRef]
    [Google Scholar]
  15. Jones K, Bradshaw S. B. 1996; Biofilm formation by Enterobacteriaceae: a comparison between Salmonella enteritidis , E. coli and a nitrogen fixing strain of Klebsiella pneumoniae . J Appl Bacteriol80:458–464[CrossRef]
    [Google Scholar]
  16. Ketley J. M. 1997; Pathogenesis of enteric infection by Campylobacter. Microbiology143:5–21[CrossRef]
    [Google Scholar]
  17. Kirchman D, Mitchell R. 1982; Contribution of particle-bound bacteria to total microheterotrophic activity in five ponds and two marshes. Water Res21:1237–1248
    [Google Scholar]
  18. Kuhn E, Giger W, Schwarzenbach R. P, van Loosdrecht M. C. M. 1987; Microbial degradation of nitrilotriacetate (NTA) during riverwater/groundwater infiltration: laboratory column studies. Water Res21:1237–1248[CrossRef]
    [Google Scholar]
  19. LaPaglia C, Hartzell P. L. 1997; Stress-induced production of biofilm in the hyperthermophile Archaeoglobus fulgidus . Appl Environ Microbiol63:3158–3163
    [Google Scholar]
  20. Lazazzera B. A. 2005; Lessons from DNA microarray analysis: the gene expression profile of biofilms. Curr Opin Microbiol8:222–227[CrossRef]
    [Google Scholar]
  21. Nachamkin I, Allos B. M, Ho T. 1998; Campylobacter species and Guillain-Barré syndrome. Clin Microbiol Rev11:555–567
    [Google Scholar]
  22. O'Farrell P. H. 1975; High resolution two-dimensional electrophoresis of proteins. J Biol Chem250:4007–4021
    [Google Scholar]
  23. Palyada K, Threadgill D, Stintzi A. 2004; Iron acquisition and regulation in Campylobacter jejuni . J Bacteriol186:4714–4729[CrossRef]
    [Google Scholar]
  24. Park S. F. 2002; The physiology of Campylobacter species and its relevance to their role as foodborne pathogens. Int J Food Microbiol74:177–188[CrossRef]
    [Google Scholar]
  25. Pearson A. D, Greenwood M, Healing T. D, Rollins D, Shamat M, Donaldson J, Colwell R. R. 1993; Colonization of broiler chickens by waterborne Campylobacter jejuni . Appl Environ Microbiol59:987–996
    [Google Scholar]
  26. Prigent-Combaret C, Vidal O, Dorel C, Lejeune P. 1999; Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli . J Bacteriol181:5993–6002
    [Google Scholar]
  27. Pysz M. A, Conners S. B, Montero C. I, Shockley K. R, Johnson M. R, Ward D. E, Kelly R. M. 2004; Transcriptional analysis of biofilm formation processes in the anaerobic, hyperthermophilic bacterium Thermotoga maritima . Appl Environ Microbiol70:6098–6112[CrossRef]
    [Google Scholar]
  28. Ratledge C, Dover L. G. 2000; Iron metabolism in pathogenic bacteria. Annu Rev Microbiol54:881–941[CrossRef]
    [Google Scholar]
  29. Ren D, Bedzyk L. A, Setlow P, Thomas S. M, Ye R. W, Wood T. K. 2004a; Gene expression in Bacillus subtilis surface biofilms with and without sporulation and the importance of yveR for biofilm maintenance. Biotechnol Bioeng86:344–364[CrossRef]
    [Google Scholar]
  30. Ren D, Bedzyk L. A, Thomas S. M, Ye R. W, Wood T. K. 2004b; Gene expression in Escherichia coli biofilms. Appl Environ Microbiol64:515–524
    [Google Scholar]
  31. Russell R. G, Blake D. C. Jr. 1994; Cell association and invasion of Caco-2 cells by Campylobacter jejuni . Infect Immun62:3773–3779
    [Google Scholar]
  32. Sampathkumar B, Khachatourians G. G, Korber D. R. 2004; Treatment of Salmonella enterica serovar Enteritidis with a sublethal concentration of trisodium phosphate or alkaline pH induces thermotolerance. Appl Environ Microbiol70:4613–4620[CrossRef]
    [Google Scholar]
  33. Schembri M, Kjaergaard K, Klemm P. 2003; Global gene expression in Escherichia coli biofilms. Mol Microbiol48:253–267[CrossRef]
    [Google Scholar]
  34. Stanley K, Cunningham R, Jones K. 1998; Isolation of Campylobacter jejuni from ground water. J Appl Microbiol85:187–191[CrossRef]
    [Google Scholar]
  35. Stanley N. R, Britton R. A, Grossman A. D, Lazazzera B. A. 2003; Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J Bacteriol185:1951–1957[CrossRef]
    [Google Scholar]
  36. Stintzi A, Marlow D, Palyada K, Naikare H, Panciera R, Whitworth L, Clarke C. 2005; Use of genome-wide expression profiling and mutagenesis to study the intestinal lifestyle of Campylobacter jejuni . Infect Immun73:1797–1810[CrossRef]
    [Google Scholar]
  37. van Loosdrecht M. C, Lyklema J, Norde W, Zehnder A. J. 1990; Influence of interfaces on microbial activity. Microbiol Rev54:73–87
    [Google Scholar]
  38. van Vliet A. H, Wooldridge K. G, Ketley J. M. 1998; Iron-repsonsive gene regulation in a Campylobacter jejuni fur mutant. J Bacteriol180:5291–5298
    [Google Scholar]
  39. Wang Q, Frye J. G, McClelland M, Harshey R. M. 2004; Gene expression patterns during swarming in Salmonella typhimurium : genes specific to surface growth and putative new motility and pathogenicity genes. Mol Microbiol52:169–187[CrossRef]
    [Google Scholar]
  40. Whitely M, Bangera M. G, Bumgarner R. E, Parsek M. R, Teitzel G. M, Lory S, Greenberg E. P. 2001; Gene expression in Pseudomonas aeruginosa biofilms. Nature413:860–864[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28405-0
Loading
/content/journal/micro/10.1099/mic.0.28405-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error