1887

Abstract

Although is a leading cause of food-borne illness, little is known about the mechanisms by which this pathogen mediates prolonged environmental survival or host cell virulence. Although these behaviours represent distinct phenotypes, they share a common requirement of an immobilized state. In order to understand the cellular mechanisms that facilitate a surface-associated lifestyle, transcriptional and translational expression profiles were determined for sessile and planktonic . These investigations indicate that the immobilized bacteria undergo a shift in cellular priorities away from metabolic, motility and protein synthesis capabilities towards emphasis on iron uptake, oxidative stress defence and membrane transport. This pattern of expression partially overlaps those reported for Campylobacter during host colonization, as well as for other species of bacteria involved in biofilms, highlighting common adaptive responses to the conserved challenges within each of these phenotypes. The adaptation of Campylobacter to immobilized growth may represent a quasi-differentiated state that functions as a foundation for further specialization towards phenotypes such as biofilm formation or host cell virulence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28405-0
2006-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/2/567.html?itemId=/content/journal/micro/10.1099/mic.0.28405-0&mimeType=html&fmt=ahah

References

  1. Altekruse S. F, Stern N. J, Fields P. I, Swerdlow D. L. 1999; Campylobacter jejuni – an emerging foodborne pathogen. Emerg Infect Dis 5:28–35 [CrossRef]
    [Google Scholar]
  2. Ardehali R, Shi L, Janatova J, Mohammad S. F, Burns G. L. 2002; The effect of apo-transferrin on bacterial adhesion to biomaterials. Artif Organs 26:512–520 [CrossRef]
    [Google Scholar]
  3. Baillon M. L, Ketley J. M, Constantinidou C, Penn C. W, van Vliet A. H. 1999; An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni . J Bacteriol 181:4798–4804
    [Google Scholar]
  4. Beloin C, Ghigo J. M. 2005; Finding gene-expression patterns in bacterial biofilms. Trends Microbiol 13:16–19 [CrossRef]
    [Google Scholar]
  5. Berndtson E, Danielsson-Tham M. L, Engvall A. 1996; Campylobacter incidence on a chicken farm and the spread of Campylobacter during the slaughter process. Int J Food Microbiol 32:35–47 [CrossRef]
    [Google Scholar]
  6. Bolton F. J, Coates D, Hutchinson D. N, Godfree A. F. 1987; A study of thermophilic campylobacters in a river system. J Appl Bacteriol 62:167–176 [CrossRef]
    [Google Scholar]
  7. Bradford M. M. 1976; A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  8. Carrillo C. D, Taboada E, Nash J. H. E. 15 other authors 2004; Genome-wide expression analyses of Campylobacter jejuni NCTC 11168 reveals coordinate regulation of motility and virulence by flhA . J Biol Chem 279:20327–20338 [CrossRef]
    [Google Scholar]
  9. de Melo M. A., Pechere J. C. 1990; Identification of Campylobacter jejuni surface proteins that bind to eucaryotic cells in vitro . Infect Immun 58:1749–1756
    [Google Scholar]
  10. Garcia-Sanchez S, Aubert S, Iraqui I, Janbon G, Ghigo J. M, d'Enfert C. 2004; Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell 3:536–545 [CrossRef]
    [Google Scholar]
  11. Golovlev E. L. 2002; The mechanism of formation of Pseudomonas aeruginosa biofilm, a type of structured population. Microbiology 71:249–254 [CrossRef]
    [Google Scholar]
  12. Görg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W. 2000; The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 6:1037–1053
    [Google Scholar]
  13. Holmes K, Mulholland F, Pearson B. M, Pin C, McNichol-Kennedy J, Ketely J. M, Wells J. M. 2005; Campylobacter jejuni gene expression in response to iron limitation and the role of Fur. Microbiology 151:243–257 [CrossRef]
    [Google Scholar]
  14. Jones K. 2001; The Campylobacter conundrum. Trends Microbiol 9:365–366 [CrossRef]
    [Google Scholar]
  15. Jones K, Bradshaw S. B. 1996; Biofilm formation by Enterobacteriaceae: a comparison between Salmonella enteritidis , E. coli and a nitrogen fixing strain of Klebsiella pneumoniae . J Appl Bacteriol 80:458–464 [CrossRef]
    [Google Scholar]
  16. Ketley J. M. 1997; Pathogenesis of enteric infection by Campylobacter. Microbiology 143:5–21 [CrossRef]
    [Google Scholar]
  17. Kirchman D, Mitchell R. 1982; Contribution of particle-bound bacteria to total microheterotrophic activity in five ponds and two marshes. Water Res 21:1237–1248
    [Google Scholar]
  18. Kuhn E, Giger W, Schwarzenbach R. P, van Loosdrecht M. C. M. 1987; Microbial degradation of nitrilotriacetate (NTA) during riverwater/groundwater infiltration: laboratory column studies. Water Res 21:1237–1248 [CrossRef]
    [Google Scholar]
  19. LaPaglia C, Hartzell P. L. 1997; Stress-induced production of biofilm in the hyperthermophile Archaeoglobus fulgidus . Appl Environ Microbiol 63:3158–3163
    [Google Scholar]
  20. Lazazzera B. A. 2005; Lessons from DNA microarray analysis: the gene expression profile of biofilms. Curr Opin Microbiol 8:222–227 [CrossRef]
    [Google Scholar]
  21. Nachamkin I, Allos B. M, Ho T. 1998; Campylobacter species and Guillain-Barré syndrome. Clin Microbiol Rev 11:555–567
    [Google Scholar]
  22. O'Farrell P. H. 1975; High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021
    [Google Scholar]
  23. Palyada K, Threadgill D, Stintzi A. 2004; Iron acquisition and regulation in Campylobacter jejuni . J Bacteriol 186:4714–4729 [CrossRef]
    [Google Scholar]
  24. Park S. F. 2002; The physiology of Campylobacter species and its relevance to their role as foodborne pathogens. Int J Food Microbiol 74:177–188 [CrossRef]
    [Google Scholar]
  25. Pearson A. D, Greenwood M, Healing T. D, Rollins D, Shamat M, Donaldson J, Colwell R. R. 1993; Colonization of broiler chickens by waterborne Campylobacter jejuni . Appl Environ Microbiol 59:987–996
    [Google Scholar]
  26. Prigent-Combaret C, Vidal O, Dorel C, Lejeune P. 1999; Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli . J Bacteriol 181:5993–6002
    [Google Scholar]
  27. Pysz M. A, Conners S. B, Montero C. I, Shockley K. R, Johnson M. R, Ward D. E, Kelly R. M. 2004; Transcriptional analysis of biofilm formation processes in the anaerobic, hyperthermophilic bacterium Thermotoga maritima . Appl Environ Microbiol 70:6098–6112 [CrossRef]
    [Google Scholar]
  28. Ratledge C, Dover L. G. 2000; Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941 [CrossRef]
    [Google Scholar]
  29. Ren D, Bedzyk L. A, Setlow P, Thomas S. M, Ye R. W, Wood T. K. 2004a; Gene expression in Bacillus subtilis surface biofilms with and without sporulation and the importance of yveR for biofilm maintenance. Biotechnol Bioeng 86:344–364 [CrossRef]
    [Google Scholar]
  30. Ren D, Bedzyk L. A, Thomas S. M, Ye R. W, Wood T. K. 2004b; Gene expression in Escherichia coli biofilms. Appl Environ Microbiol 64:515–524
    [Google Scholar]
  31. Russell R. G, Blake D. C. Jr 1994; Cell association and invasion of Caco-2 cells by Campylobacter jejuni . Infect Immun 62:3773–3779
    [Google Scholar]
  32. Sampathkumar B, Khachatourians G. G, Korber D. R. 2004; Treatment of Salmonella enterica serovar Enteritidis with a sublethal concentration of trisodium phosphate or alkaline pH induces thermotolerance. Appl Environ Microbiol 70:4613–4620 [CrossRef]
    [Google Scholar]
  33. Schembri M, Kjaergaard K, Klemm P. 2003; Global gene expression in Escherichia coli biofilms. Mol Microbiol 48:253–267 [CrossRef]
    [Google Scholar]
  34. Stanley K, Cunningham R, Jones K. 1998; Isolation of Campylobacter jejuni from ground water. J Appl Microbiol 85:187–191 [CrossRef]
    [Google Scholar]
  35. Stanley N. R, Britton R. A, Grossman A. D, Lazazzera B. A. 2003; Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J Bacteriol 185:1951–1957 [CrossRef]
    [Google Scholar]
  36. Stintzi A, Marlow D, Palyada K, Naikare H, Panciera R, Whitworth L, Clarke C. 2005; Use of genome-wide expression profiling and mutagenesis to study the intestinal lifestyle of Campylobacter jejuni . Infect Immun 73:1797–1810 [CrossRef]
    [Google Scholar]
  37. van Loosdrecht M. C, Lyklema J, Norde W, Zehnder A. J. 1990; Influence of interfaces on microbial activity. Microbiol Rev 54:73–87
    [Google Scholar]
  38. van Vliet A. H, Wooldridge K. G, Ketley J. M. 1998; Iron-repsonsive gene regulation in a Campylobacter jejuni fur mutant. J Bacteriol 180:5291–5298
    [Google Scholar]
  39. Wang Q, Frye J. G, McClelland M, Harshey R. M. 2004; Gene expression patterns during swarming in Salmonella typhimurium : genes specific to surface growth and putative new motility and pathogenicity genes. Mol Microbiol 52:169–187 [CrossRef]
    [Google Scholar]
  40. Whitely M, Bangera M. G, Bumgarner R. E, Parsek M. R, Teitzel G. M, Lory S, Greenberg E. P. 2001; Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860–864 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28405-0
Loading
/content/journal/micro/10.1099/mic.0.28405-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error