1887

Abstract

The gene mediates an output signal in the cyanobacterial circadian system. This gene and its homologues are evolutionarily old, and occur in some non-photosynthetic bacteria and archaea as well as in cyanobacteria. The gene has two functional domains that differ drastically in their level of polymorphism: the N-terminal domain is much more variable than the PurE homologous C-terminal domain. The phylogenetic tree of the homologues features four main clades (C1–C4), two of which (C1 and C3) belong to cyanobacteria. These cyanobacterial clades match respective ones in the previously reported phylogenetic trees of the other genes involved in the circadian system. The phylogenetic analysis suggested that the C3 subfamily, which comprises the genes from the cyanobacteria with the -based circadian system, experienced a lateral transfer, probably from evolutionarily old proteobacteria about 1000 million years ago. The genes of this subfamily have a significantly higher nonsynonymous substitution rate than those of C1 (2·13×10 and 1·53×10 substitutions per nonsynonymous site per year, respectively). It appears that the functional and selective constraints of the -based system have slowed down the rate of sequence evolution compared to the homologues of the -based system. On the other hand, the differences in the mutation rates between the two cyanobacterial clades point to the different functional constraints of the systems with or without .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28400-0
2006-01-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/1/75.html?itemId=/content/journal/micro/10.1099/mic.0.28400-0&mimeType=html&fmt=ahah

References

  1. Akaike, H. ( 1974; ). New look at statistical model identification tree. IEEE T Automat Contr AC19, 716–723.
    [Google Scholar]
  2. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  3. Castenholz, R. W. ( 1989; ). Subsection IV, order Nostocales. In Bergey's Manual of Systematic Bacteriology, pp. 1780–1793. Edited by J. T. Staley, M. P. Bryant, N. Pfennig & J. G. Holt. Baltimore: Williams & Wilkins.
  4. Cummings, M. P., Otto, S. P. & Wakeley, J. ( 1995; ). Sampling properties of DNA sequence data in phylogenetic analysis. Mol Biol Evol 12, 814–822.
    [Google Scholar]
  5. Ditty, J. L., Williams, S. B. & Golden, S. S. ( 2003; ). A cyanobacterial circadian timing mechanism. Annu Rev Genet 37, 513–543.[CrossRef]
    [Google Scholar]
  6. Dvornyk, V. ( 2005; ). Molecular evolution of ldpA, a gene mediating circadian input signal in cyanobacteria. J Mol Evol 60, 105–112.[CrossRef]
    [Google Scholar]
  7. Dvornyk, V. & Knudsen, B. ( 2005; ). Functional divergence of circadian clock proteins in prokaryotes. Genetica 124, 247–254.[CrossRef]
    [Google Scholar]
  8. Dvornyk, V. & Nevo, E. ( 2004; ). Evidence for multiple lateral transfers of the circadian clock cluster in filamentous heterocystic cyanobacteria Nostocaceae. J Mol Evol 58, 341–347.[CrossRef]
    [Google Scholar]
  9. Dvornyk, V., Vinogradova, O. N. & Nevo, E. ( 2002; ). Long-term microclimatic stress causes rapid adaptive radiation of kaiABC clock gene family in a cyanobacterium, Nostoc linckia, from the "Evolution Canyons" I and II, Israel. Proc Natl Acad Sci U S A 99, 2082–2087.[CrossRef]
    [Google Scholar]
  10. Dvornyk, V., Deng, H. W. & Nevo, E. ( 2004; ). Structure and molecular phylogeny of sasA genes in cyanobacteria: insights into evolution of the prokaryotic circadian system. Mol Biol Evol 21, 1468–1476.[CrossRef]
    [Google Scholar]
  11. Dvornyk, V., Vinogradova, O. N. & Nevo, E. ( 2003; ). Origin and evolution of circadian clock genes in prokaryotes. Proc Natl Acad Sci U S A 100, 2495–2500.[CrossRef]
    [Google Scholar]
  12. Garcia-Pichel, F., Lopez-Cortes, A. & Nubel, U. ( 2001; ). Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado plateau. Appl Environ Microbiol 67, 1902–1910.[CrossRef]
    [Google Scholar]
  13. Gogarten, J. P., Doolittle, W. F. & Lawrence, J. G. ( 2002; ). Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19, 2226–2238.[CrossRef]
    [Google Scholar]
  14. Golden, S. S., Brusslan, J. & Haselkorn, R. ( 1986; ). Expression of a family of psbA genes encoding a photosystem II polypeptide in the cyanobacterium Anacystis nidulans R2. EMBO J 5, 2789–2798.
    [Google Scholar]
  15. Goldman, N. & Yang, Z. ( 1994; ). A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11, 725–736.
    [Google Scholar]
  16. Graybeal, A. ( 1998; ). Is it better to add taxa or characters to a difficult phylogenetic problem? Syst Biol 47, 9–17.[CrossRef]
    [Google Scholar]
  17. Honda, D., Yokota, A. & Sugiyama, J. ( 1999; ). Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J Mol Evol 48, 723–739.[CrossRef]
    [Google Scholar]
  18. Huelsenbeck, J. P. ( 1995; ). Performance of phylogenetic methods in simulation. Syst Biol 44, 17–48.[CrossRef]
    [Google Scholar]
  19. Ishiura, M., Kutsuna, S., Aoki, S., Iwasaki, H., Andersson, C. R., Tanabe, A., Golden, S. S., Johnson, C. H. & Kondo, T. ( 1998; ). Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 281, 1519–1523.[CrossRef]
    [Google Scholar]
  20. Iwasaki, H., Williams, S. B., Kitayama, Y., Ishiura, M., Golden, S. S. & Kondo, T. ( 2000; ). A kaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteria. Cell 101, 223–233.[CrossRef]
    [Google Scholar]
  21. Johnson, C. H. & Golden, S. S. ( 1999; ). Circadian programs in cyanobacteria: adaptiveness and mechanism. Annu Rev Microbiol 53, 389–409.[CrossRef]
    [Google Scholar]
  22. Kaneko, T., Nakamura, Y., Wolk, C. P. & 18 other authors ( 2001; ). Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8, 205–213.[CrossRef]
    [Google Scholar]
  23. Katayama, M., Tsinoremas, N. F., Kondo, T. & Golden, S. S. ( 1999; ). cpmA, a gene involved in an output pathway of the cyanobacterial circadian system. J Bacteriol 181, 3516–3524.
    [Google Scholar]
  24. Katayama, M., Kondo, T., Xiong, J. & Golden, S. S. ( 2003; ). ldpA encodes an iron-sulfur protein involved in light-dependent modulation of the circadian period in the cyanobacterium Synechococcus elongatus PCC 7942. J Bacteriol 185, 1415–1422.[CrossRef]
    [Google Scholar]
  25. Kishino, H. & Hasegawa, M. ( 1989; ). Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29, 170–179.[CrossRef]
    [Google Scholar]
  26. Kondo, T. & Ishiura, M. ( 2000; ). The circadian clock of cyanobacteria. Bioessays 22, 10–15.[CrossRef]
    [Google Scholar]
  27. Koonin, E. V., Makarova, K. S. & Aravind, L. ( 2001; ). Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 55, 709–742.[CrossRef]
    [Google Scholar]
  28. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  29. Kutsuna, S., Kondo, T., Aoki, S. & Ishiura, M. ( 1998; ). A period-extender gene, pex, that extends the period of the circadian clock in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 180, 2167–2174.
    [Google Scholar]
  30. Liu, Y., Tsinoremas, N. F., Johnson, C. H., Lebedeva, N. V., Golden, S. S., Ishiura, M. & Kondo, T. ( 1995; ). Circadian orchestration of gene expression in cyanobacteria. Genes Dev 9, 1469–1478.[CrossRef]
    [Google Scholar]
  31. Lloyd, A. T. & Sharp, P. M. ( 1993; ). Evolution of the recA gene and the molecular phylogeny of bacteria. J Mol Evol 37, 399–407.
    [Google Scholar]
  32. Lyra, C., Suomalainen, S., Gugger, M., Vezie, C., Sundman, P., Paulin, L. & Sivonen, K. ( 2001; ). Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera. Int J Syst Evol Microbiol 51, 513–526.
    [Google Scholar]
  33. Maddison, W. P. ( 1997; ). Gene trees in species trees. Syst Biol 46, 523–536.[CrossRef]
    [Google Scholar]
  34. Marchler-Bauer, A., Anderson, J. B., DeWeese-Scott, C. & 24 other authors ( 2003; ). cdd: a curated Entrez database of conserved domain alignments. Nucleic Acids Res 31, 383–387.[CrossRef]
    [Google Scholar]
  35. Martin, A. P. & Burg, T. M. ( 2002; ). Perils of paralogy: using HSP70 genes for inferring organismal phylogenies. Syst Biol 51, 570–587.[CrossRef]
    [Google Scholar]
  36. Meyer, E., Leonard, N. J., Bhat, B., Stubbe, J. & Smith, J. M. ( 1992; ). Purification and characterization of the purE, purK, and purC gene products: identification of a previously unrecognized energy requirement in the purine biosynthetic pathway. Biochemistry 31, 5022–5032.[CrossRef]
    [Google Scholar]
  37. Nakamura, Y., Kaneko, T., Sato, S. & 16 other authors ( 2003; ). Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Res 10, 137–145.[CrossRef]
    [Google Scholar]
  38. Nei, M. & Gojobori, T. ( 1986; ). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3, 418–426.
    [Google Scholar]
  39. Nielsen, R. & Yang, Z. ( 1998; ). Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148, 929–936.
    [Google Scholar]
  40. Ohno, S. ( 1970; ). Evolution by Gene Duplication. Berlin: Springer.
  41. Posada, D. & Crandall, K. A. ( 1998; ). modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.[CrossRef]
    [Google Scholar]
  42. Rokas, A., King, N., Finnerty, J. & Carroll, S. B. ( 2003; ). Conflicting phylogenetic signals at the base of the metazoan tree. Evol Dev 5, 346–359.[CrossRef]
    [Google Scholar]
  43. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  44. Schaefer, M. R. & Golden, S. S. ( 1989; ). Light availability influences the ratio of two forms of D1 in cyanobacterial thylakoids. J Biol Chem 264, 7412–7417.
    [Google Scholar]
  45. Schmitz, O., Katayama, M., Williams, S. B., Kondo, T. & Golden, S. S. ( 2000; ). CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock. Science 289, 765–768.[CrossRef]
    [Google Scholar]
  46. Shimodaira, H. & Hasegawa, M. ( 1999; ). Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16, 1114–1116.[CrossRef]
    [Google Scholar]
  47. Sitnikova, T., Rzhetsky, A. & Nei, M. ( 1995; ). Interior-branch and bootstrap tests of phylogenetic trees. Mol Biol Evol 12, 319–333.
    [Google Scholar]
  48. Tamura, K. & Nei, M. ( 1993; ). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10, 512–526.
    [Google Scholar]
  49. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  50. Tiedeman, A. A., Keyhani, J., Kamholz, J., Daum, H. A., III, Gots, J. S. & Smith, J. M. ( 1989; ). Nucleotide sequence analysis of the purEK operon encoding 5′-phosphoribosyl-5-aminoimidazole carboxylase of Escherichia coli K-12. J Bacteriol 171, 205–212.
    [Google Scholar]
  51. Tsinoremas, N. F., Ishiura, M., Kondo, T., Tanaka, K., Takahashi, H., Johnson, C. H. & Golden, S. S. ( 1996; ). A sigma factor that modifies the circadian expression of a subset of genes in cyanobacteria. EMBO J 15, 2488–2495.
    [Google Scholar]
  52. Turner, S. ( 1997; ). Molecular systematics of oxygenic photosynthetic bacteria. Plant Syst Evol [Suppl] 11, 13–52.
    [Google Scholar]
  53. Watanabe, W., Sampei, G., Aiba, A. & Mizobuchi, K. ( 1989; ). Identification and sequence analysis of Escherichia coli purE and purK genes encoding 5′-phosphoribosyl-5-amino-4-imidazole carboxylase for de novo purine biosynthesis. J Bacteriol 171, 198–204.
    [Google Scholar]
  54. Whelan, S. & Goldman, N. ( 2001; ). A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18, 691–699.[CrossRef]
    [Google Scholar]
  55. Xiong, J., Fischer, W. M., Inoue, K., Nakahara, M. & Bauer, C. E. ( 2000; ). Molecular evidence for the early evolution of photosynthesis. Science 289, 1724–1730.[CrossRef]
    [Google Scholar]
  56. Yang, Z. ( 1997; ). paml: a program package for phylogenetic analysis by maximum likelihood. CABIOS 15, 555–556.
    [Google Scholar]
  57. Yang, Z. ( 1998; ). Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15, 568–573.[CrossRef]
    [Google Scholar]
  58. Yang, Z. & Nielsen, R. ( 2002; ). Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19, 908–917.[CrossRef]
    [Google Scholar]
  59. Yang, Z., Goldman, N. & Friday, A. ( 1994; ). Comparison of models for nucleotide substitution used in maximum-likelihood phylogenetic estimation. Mol Biol Evol 11, 316–324.
    [Google Scholar]
  60. Yang, Z., Nielsen, R., Goldman, N. & Pedersen, A.-M. K. ( 2000; ). Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155, 431–449.
    [Google Scholar]
  61. Yoder, A. D. & Yang, Z. ( 2000; ). Estimation of primate speciation dates using local molecular clocks. Mol Biol Evol 17, 1081–1090.[CrossRef]
    [Google Scholar]
  62. Zhang, J., Rosenberg, H. F. & Nei, M. ( 1998; ). Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci U S A 95, 3708–3713.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28400-0
Loading
/content/journal/micro/10.1099/mic.0.28400-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error