1887

Abstract

Methionine synthase (EC2.1.1.14) catalyses the final step in methionine synthesis, i.e. methylation of homocysteine. A search of the genomic database revealed a gene designated SPAC9.09, encoding a protein with significant homology to methionine synthase. Disruption of SPAC9.09 caused methionine auxotrophy, and thus the gene was identified as a methionine synthase and designated . The mutant was found to exhibit a remarkable growth defect in the absence of adenine even in medium supplemented with methionine. This phenotype was not observed in other methionine auxotrophs. In the budding yeast , which has been reported to utilize homocysteine in cysteine synthesis, lack of a functional methionine synthase did not cause a requirement for adenine. The introduction of genes from constituting the cystathionine pathway ( and ) into Δ cells restored growth in the absence of adenine. HPLC analysis showed that total homocysteine content in Δ cells was higher than in other methionine auxotrophs and that introduction of the cystathionine pathway decreased total homocysteine levels. These data demonstrate that accumulation of homocysteine causes a defect in purine biosynthesis in the mutant.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28398-0
2006-02-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/2/397.html?itemId=/content/journal/micro/10.1099/mic.0.28398-0&mimeType=html&fmt=ahah

References

  1. Aguilar, B., Rojas, J. C. & Collados, M. T. ( 2004; ). Metabolism of homocysteine and its relationship with cardiovascular disease. J Thromb Thrombolysis 18, 75–87.[CrossRef]
    [Google Scholar]
  2. Alfa, C., Fantes, P., Hyams, J., Mcleod, M. & Warbrick, E. ( 1993; ). Experiments with Fission Yeast. A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  3. Allen, E. H. & Hussey, G. G. ( 1971; ). Inhibition of the growth of Helminthosporium carbonum by l-cysteine. Can J Microbiol 17, 101–103.[CrossRef]
    [Google Scholar]
  4. Basi, G., Schmid, E. & Maundrell, K. ( 1993; ). TATA box mutations in the Schizosaccharomyces pombe nmt1 promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene 123, 131–136.[CrossRef]
    [Google Scholar]
  5. Brzywczy, J., Sienko, M., Kucharska, A. & Paszewski, A. ( 2002; ). Sulphur amino acid synthesis in Schizosaccharomyces pombe represents a specific variant of sulphur metabolism in fungi. Yeast 19, 29–35.[CrossRef]
    [Google Scholar]
  6. Chaudhuri, B., Ingavale, S. & Bachhawat, A. K. ( 1996; ). apd1 +, a gene required for red pigment formation in ade6 mutants of Schizosaccharomyces pombe, encodes an enzyme required for glutathione biosynthesis: a role for glutathione and a glutathione-conjugate pump. Genetics 145, 75–83.
    [Google Scholar]
  7. Fujita, Y. & Takegawa, K. ( 2004; ). Characterization of two genes encoding putative cysteine synthase required for cysteine biosynthesis in Schizosaccharomyces pombe. Biosci Biotechnol Biochem 68, 306–311.[CrossRef]
    [Google Scholar]
  8. Fujita, Y., Giga-Hama, Y. & Takegawa, K. ( 2005; ). Development of a genetic transformation system using new selectable markers for fission yeast Schizosaccharomyces pombe. Yeast 22, 193–202.[CrossRef]
    [Google Scholar]
  9. Grimm, C., Kohil, J., Murray, J. & Maundrell, K. ( 1988; ). Genetic engineering of Schizosaccharomyces pombe: a system for gene disruption and replacement using the ura4 gene as a selectable marker. Mol Gen Genet 215, 81–86.[CrossRef]
    [Google Scholar]
  10. Hatanaka, H., Ariga, N., Nagai, J. & Katsuki, H. ( 1974; ). Accumulation of a sterol intermediate during reaction in the presence of homocysteine with cell-free extract of yeast. Biochem Biophys Res Commun 60, 787–793.[CrossRef]
    [Google Scholar]
  11. Holmes, W. B. & Appling, D. R. ( 2002; ). Cloning and characterization of methenyltetrahydrofolate synthetase from Saccharomyces cerevisiae. J Biol Chem 277, 20205–20213.[CrossRef]
    [Google Scholar]
  12. Iwaki, T. & Takegawa, K. ( 2004; ). A set of loxP marker cassettes for Cre-mediated multiple gene disruption in Schizosaccharomyces pombe. Biosci Biotechnol Biochem 68, 545–550.[CrossRef]
    [Google Scholar]
  13. Kari, C., Nagy, Z., Kovacs, P. & Hernadi, F. ( 1971; ). Mechanism of the growth inhibitory effect of cysteine on Escherichia coli. J Gen Microbiol 68, 349–356.[CrossRef]
    [Google Scholar]
  14. Klein, R. D. & Favreau, M. A. ( 1988; ). Transformation of Schwanniomyces occidentalis with an ADE2 gene cloned from S. occidentalis. J Bacteriol 170, 5572–5578.
    [Google Scholar]
  15. Marzluf, G. A. ( 1997; ). Molecular genetics of sulfur assimilation in filamentous fungi and yeast. Annu Rev Microbiol 51, 73–96.[CrossRef]
    [Google Scholar]
  16. Maw, G. A. ( 1961; ). Ability of S-methyl-l-cysteine to annul the inhibition of yeast growth by l-ethionine and by s-ethyl-l-cysteine. J Gen Microbiol 25, 441–449.[CrossRef]
    [Google Scholar]
  17. Morita, T. & Takegawa, K. ( 2004; ). A simple and efficient procedure for transformation of Schizosaccharomyces pombe. Yeast 21, 613–617.[CrossRef]
    [Google Scholar]
  18. Parks, L. W. & Casey, W. M. ( 1995; ). Physiological implications of sterol biosynthesis in yeast. Annu Rev Microbiol 49, 95–116.[CrossRef]
    [Google Scholar]
  19. Paszewski, A. ( 1993; ). Sulfur amino acid metabolism and its regulation in fungi: studies with Aspergillus nidulans. Acta Biochim Pol 40, 445–449.
    [Google Scholar]
  20. Quere, I., Habib, A., Tobelem, G. & Maclouf, J. ( 1995; ). Inhibition of cyclooxygenase activity in human endothelial cells by homocysteine. Adv Prostaglandin Thromboxane Leukot Res 23, 397–399.
    [Google Scholar]
  21. Raposo, B., Rodriguez, C., Martinez-Gonzalez, J. & Badimon, L. ( 2004; ). High levels of homocysteine inhibit lysyl oxidase (LOX) and downregulate LOX expression in vascular endothelial cells. Atherosclerosis 177, 1–8.[CrossRef]
    [Google Scholar]
  22. Roman, H. ( 1956; ). A system selective for mutations affecting the synthesis of adenine in yeast. Compt Rend Trav Lab Carlsberg Ser Physiol 26, 299–314.
    [Google Scholar]
  23. Schweingruber, A. M., Hilti, N., Edenharter, E. & Schweingruber, M. E. ( 1998; ). Methionine induces sexual development in the fission yeast Schizosaccharomyces pombe via an ste11-dependent signalling pathway. J Bacteriol 180, 6338–6341.
    [Google Scholar]
  24. Suga, M. & Hatakeyama, T. ( 2001; ). High efficiency transformation of Schizosaccharomyces pombe pretreated with thiol compounds by electroporation. Yeast 18, 1015–1021.[CrossRef]
    [Google Scholar]
  25. Thomas, D. & Surdin-Kerjan, Y. ( 1997; ). Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61, 503–532.
    [Google Scholar]
  26. Topal, G., Brunet, A., Millanvoye, E., Boucher, J. L., Rendu, F., Devynck, M. A. & David-Dufilho, M. ( 2004; ). Homocysteine induces oxidative stress by uncoupling of NO synthase activity through reduction of tetrahydrobiopterin. Free Radic Biol Med 36, 1532–1541.[CrossRef]
    [Google Scholar]
  27. Wickerham, L. J. ( 1946; ). A critical evaluation of the nitrogen assimilation tests commonly used in the classification of yeast. J Bacteriol 52, 293–301.
    [Google Scholar]
  28. Zonneveld, B. J. & van der Zanden, A. L. ( 1995; ). The red ade mutants of Kluyveromyces lactis and their classification by complementation with cloned ADE1 or ADE2 genes from Saccharomyces cerevisiae. Yeast 11, 823–827.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28398-0
Loading
/content/journal/micro/10.1099/mic.0.28398-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error