1887

Abstract

is an opportunistic pathogen which demonstrates considerable respiratory versatility, possessing up to five terminal oxidases. One oxidase, the cyanide-insensitive oxidase (CIO), has been previously shown to be resistant to the potent respiratory inhibitor cyanide, a toxin that is synthesized by this bacterium. This study investigated the physiological relationship between hydrogen cyanide production and the CIO. It was found that cyanide is produced in at similar levels irrespective of its complement of CIO, indicating that the CIO is not an obligatory electron sink for cyanide synthesis. However, MICs for cyanide and growth in its presence demonstrated that the CIO provides with protection against the effects of exogenous cyanide. Nevertheless, the presence of cyanide did not affect the viability of mutant strains compared to the wild-type during prolonged incubation in stationary phase. The detection of the fermentation end products acetate and succinate in stationary-phase culture supernatants suggests that , irrespective of its CIO complement, may in part rely upon fermentation for energy generation in stationary phase. Furthermore, the decrease in cyanide levels during incubation in sealed flasks suggested that active breakdown of HCN by the culture was taking place. To investigate the possibility that the CIO may play a role in pathogenicity, wild-type and mutant strains were tested in the paralytic killing model of , a model in which cyanide is the principal toxic agent leading to nematode death. The CIO mutant had delayed killing kinetics, demonstrating that the CIO is required for full pathogenicity of in this animal model.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28396-0
2006-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/5/1407.html?itemId=/content/journal/micro/10.1099/mic.0.28396-0&mimeType=html&fmt=ahah

References

  1. Arun P., Moffett J. R., Ives J. A., Todorov T. I., Centeno J. A., Namboodiri M. A., Jonas W. B. 2005; Rapid sodium cyanide depletion in cell culture media: outgassing of hydrogen cyanide at physiological pH. Anal Biochem 339:282–289 [CrossRef]
    [Google Scholar]
  2. Baughn A. D., Malamy M. H. 2004; The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 427:441–444 [CrossRef]
    [Google Scholar]
  3. Blumer C., Haas D. 2000; Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173:170–177 [CrossRef]
    [Google Scholar]
  4. Brenner S. 1974; The genetics of Caenorhabditis elegans . Genetics 77:71–94
    [Google Scholar]
  5. Cipollone R., Bigotti M. G., Frangipani E., Ascenzi P., Visca P. 2004; Characterization of a rhodanese from the cyanogenic bacterium Pseudomonas aeruginosa . Biochem Biophys Res Commun 325:85–90 [CrossRef]
    [Google Scholar]
  6. Cipollone R., Ascenzi P., Frangipani E., Visca P. 2006; Cyanide detoxification by recombinant bacterial rhodanese. Chemosphere in press
    [Google Scholar]
  7. Comolli J. C., Donohue T. J. 2002; Pseudomonas aeruginosa RoxR, a response regulator related to Rhodobacter sphaeroides PrrA, activates expression of the cyanide-insensitive terminal oxidase. Mol Microbiol 45:755–768 [CrossRef]
    [Google Scholar]
  8. Cooper M., Tavankar G. R., Williams H. D. 2003; Regulation of expression of the cyanide-insensitive terminal oxidase in Pseudomonas aeruginosa . Microbiology 149:1275–1284 [CrossRef]
    [Google Scholar]
  9. Cunningham L., Williams H. D. 1995; Isolation and characterization of mutants defective in the cyanide-insensitive respiratory pathway of Pseudomonas aeruginosa . J Bacteriol 177:432–438
    [Google Scholar]
  10. Cunningham L., Pitt M., Williams H. D. 1997; The cioAB genes from Pseudomonas aeruginosa code for a novel cyanide-insensitive terminal oxidase related to the cytochrome bd quinol oxidases. Mol Microbiol 24:579–591 [CrossRef]
    [Google Scholar]
  11. Darby C., Cosma C. L., Thomas J. H., Manoil C. 1999; Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 96:15202–15207 [CrossRef]
    [Google Scholar]
  12. Davies K. J., Lloyd D., Boddy L. 1989; The effect of oxygen on denitrification in Paracoccus denitrificans and Pseudomonas aeruginosa . J Gen Microbiol 135:2445–2451
    [Google Scholar]
  13. D'Mello R., Hill S., Poole R. K. 1996; The cytochrome bd quinol oxidase in Escherichia coli has an extremely high oxygen affinity and two oxygen-binding haems: implications for regulation of activity in vivo by oxygen inhibition. Microbiology 142:755–763 [CrossRef]
    [Google Scholar]
  14. Eschbach M., Schreiber K., Trunk K., Buer J., Jahn D., Schobert M. 2004; Long-term anaerobic survival of the opportunistic pathogen Pseudomonas aeruginosa via pyruvate fermentation. J Bacteriol 186:4596–4604 [CrossRef]
    [Google Scholar]
  15. Fujiwara T., Fukumori Y., Yamanaka T. 1992; A novel terminal oxidase, cytochrome baa 3 purified from aerobically grown Pseudomonas aeruginosa : it shows a clear difference between resting state and pulsed state. J Biochem 112:290–298
    [Google Scholar]
  16. Gallagher L. A., Manoil C. 2001; Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol 183:6207–6214 [CrossRef]
    [Google Scholar]
  17. Goldfarb W. B., Margraf H. 1967; Cyanide production by Pseudomonas aeruginosa . Ann Surg 165:104–110 [CrossRef]
    [Google Scholar]
  18. Hassett D. J., Cuppoletti J., Trapnell B. 10 other authors 2002; Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Adv Drug Deliv Rev 54:1425–1443 [CrossRef]
    [Google Scholar]
  19. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. 1989; Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59 [CrossRef]
    [Google Scholar]
  20. Hoffmann H. D., Morgan T. V., Der Vartanian D. V. 1979; Respiratory-chain characteristics of mutants of Azotobacter vinelandii negative to tetramethyl- p -phenylenediamine. Eur J Biochem 100:19–27 [CrossRef]
    [Google Scholar]
  21. Jünemann S. 1997; Cytochrome bd terminal oxidase. Biochim Biophys Acta 1321107–127 [CrossRef]
    [Google Scholar]
  22. Lindon J. C., Nicholson J. K., Everett J. R. 1999; NMR spectroscopy of biofluids. Annu Rep NMR Spectrosc 38:1–88
    [Google Scholar]
  23. Lyczak J. B., Cannon C. L., Pier G. B. 2000; Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2:1051–1060 [CrossRef]
    [Google Scholar]
  24. Mahajan-Miklos S., Tan M. W., Rahme L. G., Ausubel F. M. 1999; Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa - Caenorhabditis elegans pathogenesis model. Cell 96:47–56 [CrossRef]
    [Google Scholar]
  25. Milton D. L., O'Toole R., Wolf-Watz H, Hörstedt P. 1996; Flagellin A is essential for the virulence of Vibrio anguillarum . J Bacteriol 178:1310–1319
    [Google Scholar]
  26. Pessi G., Haas D. 2000; Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum-sensing regulators LasR and RhlR in Pseudomonas aeruginosa . J Bacteriol 182:6940–6949 [CrossRef]
    [Google Scholar]
  27. Poole R. K., Cook G. M. 2000; Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation. Adv Microb Physiol 43:165–224
    [Google Scholar]
  28. Tan M. W., Mahajan-Miklos S., Ausubel F. M. 1999; Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci U S A 96:715–720 [CrossRef]
    [Google Scholar]
  29. Tavankar G. R., Mossialos D., Williams H. D. 2003; Mutation or overexpression of a terminal oxidase leads to a cell division defect and multiple antibiotic sensitivity in Pseudomonas aeruginosa . J Biol Chem 278:4524–4530 [CrossRef]
    [Google Scholar]
  30. Vander Wauven C., Kley-Raymann M., Haas D, Piérard A. 1984; Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: evidence for a four-gene cluster encoding the arginine deiminase pathway. J Bacteriol 160:928–934
    [Google Scholar]
  31. Wood W. B. 1988 The Nematode Caenorhabditis elegans Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Zannoni D. 1989; The respiratory chains of pathogenic pseudomonads. Biochim Biophys Acta 975:299–316 [CrossRef]
    [Google Scholar]
  33. Zlosnik J. E. A., Williams H. D. 2004; Methods for assaying cyanide in bacterial culture supernatant. Lett Appl Microbiol 38:360–365 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28396-0
Loading
/content/journal/micro/10.1099/mic.0.28396-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error