1887

Abstract

Copper uptake in the fission yeast is carried out by a heteromeric complex formed by two proteins, Ctr4 and Ctr5. In this study, a stable expression system using integrative plasmids was developed to investigate the respective roles of Ctr4 and Ctr5 in copper transport. It was shown that expression of full-length Ctr4 or truncated Ctr4 containing residues 106–289 was required for localization of Ctr5 to the plasma membrane. Likewise, when the full-length Ctr5 or truncated Ctr5 from residues 44–173 was co-expressed with Ctr4, this protein was visualized at the periphery of the cell. To determine the importance of the Mets motifs (consisting of five methionines arranged as Met-X2-Met-X-Met, where X is any amino acid) of Ctr4 and Ctr5 in the heteroprotein complex, we co-expressed Ctr5 lacking the Mets motif and Cys-X-Met-X-Met sequence with wild-type Ctr4 or its mutant derivatives. Conversely, Ctr4 lacking the Mets motif and Met was expressed with wild-type Ctr5 or its mutant derivatives. These experiments revealed that the five Mets motifs of Ctr4 and the Ctr4 residue Met have equally important roles in copper assimilation. Furthermore, the two partially overlapping Mets motifs and the Cys-X-Met-X-Met sequence in Ctr5 have redundant functions in copper transport, with the latter sequence making a greater contribution than the former. Together, the data reveal that co-expression of both Ctr4 and Ctr5 is necessary for the proper function and localization of the heteroprotein complex to the plasma membrane. Once on the cell surface, the N-terminal regions of Ctr4 and Ctr5 can function independently to transport copper; however, the greatest efficiency is achieved when both N termini are present.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28392-0
2006-01-01
2019-09-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/1/209.html?itemId=/content/journal/micro/10.1099/mic.0.28392-0&mimeType=html&fmt=ahah

References

  1. Alfa, C., Fantes, P., Hyams, J., McLeod, M. & Warbrick, E. ( 1993; ). In Experiments with Fission Yeasts: Laboratory Course Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  2. Aller, S. G., Eng, E. T., De Feo, C. J. & Unger, V. M. ( 2004; ). Eukaryotic CTR copper uptake transporters require two faces of the third transmembrane domain for helix packing, oligomerization, and function. J Biol Chem 279, 53435–53441.[CrossRef]
    [Google Scholar]
  3. Askwith, C. & Kaplan, J. ( 1997; ). An oxidase-permease-based iron transport system in Schizosaccharomyces pombe and its expression in Saccharomyces cerevisiae. J Biol Chem 272, 401–405.[CrossRef]
    [Google Scholar]
  4. Askwith, C., Eide, D., Van Ho, A., Bernard, P. S., Li, L., Davis-Kaplan, S., Sipe, D. M. & Kaplan, J. ( 1994; ). The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76, 403–410.[CrossRef]
    [Google Scholar]
  5. Beaudoin, J., Mercier, A., Langlois, R. & Labbé, S. ( 2003; ). The Schizosaccharomyces pombe Cuf1 is composed of functional modules from two distinct classes of copper metalloregulatory transcription factors. J Biol Chem 278, 14565–14577.[CrossRef]
    [Google Scholar]
  6. Bellemare, D. R., Sanschagrin, M., Beaudoin, J. & Labbé, S. ( 2001; ). A novel copper-regulated promoter system for expression of heterologous proteins in Schizosaccharomyces pombe. Gene 273, 191–198.[CrossRef]
    [Google Scholar]
  7. Bellemare, D. R., Shaner, L., Morano, K. A., Beaudoin, J., Langlois, J. & Labbé, S. ( 2002; ). Ctr6, a vacuolar membrane copper transporter in Schizosaccharomyces pombe. J Biol Chem 277, 46676–46686.[CrossRef]
    [Google Scholar]
  8. Bezanilla, M., Forsburg, S. L. & Pollard, T. D. ( 1997; ). Identification of a second myosin-II in Schizosaccharomyces pombe: Myp2p is conditionally required for cytokinesis. Mol Biol Cell 8, 2693–2705.[CrossRef]
    [Google Scholar]
  9. Dancis, A., Yuan, D. S., Haile, D., Askwith, C., Eide, D., Moehle, C., Kaplan, J. & Klausner, R. D. ( 1994a; ). Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell 76, 393–402.[CrossRef]
    [Google Scholar]
  10. Dancis, A., Haile, D., Yuan, D. S. & Klausner, R. D. ( 1994b; ). The Saccharomyces cerevisiae copper transport protein (Ctr1p). J Biol Chem 269, 25660–25667.
    [Google Scholar]
  11. De Silva, D. M., Askwith, C. C., Eide, D. & Kaplan, J. ( 1995; ). The FET3 gene product required for high affinity iron transport in yeast is a cell surface ferroxidase. J Biol Chem 270, 1098–1101.[CrossRef]
    [Google Scholar]
  12. Forbes, J. R., His, G. & Cox, D. W. ( 1999; ). Role of the copper-binding domain in the copper transport function of ATP7B, the P-type ATPase defective in Wilson disease. J Biol Chem 274, 12408–12413.[CrossRef]
    [Google Scholar]
  13. Georgatsou, E., Mavrogiannis, L. A., Fragiadakis, G. S. & Alexandraki, D. ( 1997; ). The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator. J Biol Chem 272, 13786–13792.[CrossRef]
    [Google Scholar]
  14. Halliwell, B. & Gutteridge, J. M. ( 1984; ). Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219, 1–14.
    [Google Scholar]
  15. Hassett, R. & Kosman, D. J. ( 1995; ). Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae. J Biol Chem 270, 128–134.[CrossRef]
    [Google Scholar]
  16. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K. & Pease, L. R. ( 1989; ). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59.[CrossRef]
    [Google Scholar]
  17. Huster, D. & Lutsenko, S. ( 2003; ). The distinct roles of the N-terminal copper-binding sites in regulation of catalytic activity of the Wilson's Disease protein. J Biol Chem 278, 32212–32218.[CrossRef]
    [Google Scholar]
  18. Iida, M., Terada, K., Sambongi, Y., Wakabayashi, T., Miura, N., Koyama, K., Futai, M. & Sugiyama, T. ( 1998; ). Analysis of functional domains of Wilson Disease protein (ATP7B) in Saccharomyces cerevisiae. FEBS Lett 428, 281–285.[CrossRef]
    [Google Scholar]
  19. Keeney, J. B. & Boeke, J. D. ( 1994; ). Efficient targeted integration at leu1-32 and ura4-294 in Schizosaccharomyces pombe. Genetics 136, 849–856.
    [Google Scholar]
  20. Knight, S. A., Labbé, S., Kwon, L. F., Kosman, D. J. & Thiele, D. J. ( 1996; ). A widespread transposable element masks expression of a yeast copper transport gene. Genes Dev 10, 1917–1929.[CrossRef]
    [Google Scholar]
  21. Labbé, S., Peña, M. M. O., Fernandes, A. R. & Thiele, D. J. ( 1999; ). A copper-sensing transcription factor regulates iron uptake genes in Schizosaccharomyces pombe. J Biol Chem 274, 36252–36260.[CrossRef]
    [Google Scholar]
  22. Martins, L. J., Jensen, L. T., Simons, J. R., Keller, G. L. & Winge, D. R. ( 1998; ). Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae. J Biol Chem 273, 23716–23721.[CrossRef]
    [Google Scholar]
  23. Payne, A. S. & Gitlin, J. D. ( 1998; ). Functional expression of the Menkes Disease protein reveals common biochemical mechanisms among the copper-transporting P-type ATPases. J Biol Chem 273, 3765–3770.[CrossRef]
    [Google Scholar]
  24. Peña, M. M. O., Lee, J. & Thiele, D. J. ( 1999; ). A delicate balance: homeostatic control of copper uptake and distribution. J Nutr 129, 1251–1260.
    [Google Scholar]
  25. Peña, M. M. O., Puig, S. & Thiele, D. J. ( 2000; ). Characterization of the Saccharomyces cerevisiae high-affinity copper transporter Ctr3. J Biol Chem 275, 33244–33251.[CrossRef]
    [Google Scholar]
  26. Puig, S. & Thiele, D. J. ( 2002a; ). Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6, 171–180.[CrossRef]
    [Google Scholar]
  27. Puig, S., Lee, J., Lau, M. & Thiele, D. J. ( 2002b; ). Biochemical and genetic analyses of yeast and human high-affinity copper transporters suggest a conserved mechanism for copper uptake. J Biol Chem 277, 26021–26030.[CrossRef]
    [Google Scholar]
  28. Rees, E. M. & Thiele, D. J. ( 2004a; ). From aging to virulence: forging connections through the study of copper homeostasis in eukaryotic microorganisms. Curr Opin Microbiol 7, 175–184.[CrossRef]
    [Google Scholar]
  29. Rees, E. M., Lee, J. & Thiele, D. J. ( 2004b; ). Mobilization of intracellular copper stores by the Ctr2 vacuolar copper transporter. J Biol Chem 279, 54221–54229.[CrossRef]
    [Google Scholar]
  30. Severance, S., Chakraborty, S. & Kosman, D. J. ( 2004; ). The Ftr1p iron permease in the yeast plasma membrane: orientation, topology and structure–function relationships. Biochem J 380, 487–496.[CrossRef]
    [Google Scholar]
  31. Stearman, R., Yuan, D. S., Yamaguchi-Iwai, Y., Klausner, R. D. & Dancis, A. ( 1996; ). A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 271, 1552–1557.[CrossRef]
    [Google Scholar]
  32. Strausak, D., La Fontaine, S., Hill, J., Firth, S. D., Lockhart, P. J. & Mercer, J. F. ( 1999; ). The role of GMXCXXC metal binding sites in the copper-induced redistribution of the Menkes protein. J Biol Chem 274, 11170–11177.[CrossRef]
    [Google Scholar]
  33. Zhou, H. & Thiele, D. J. ( 2001; ). Identification of a novel high-affinity copper transport complex in the fission yeast Schizosaccharomyces pombe. J Biol Chem 276, 20529–20535.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28392-0
Loading
/content/journal/micro/10.1099/mic.0.28392-0
Loading

Data & Media loading...

Supplementary figure legends. [PDF file](32 KB)

PDF

Supplementary Fig. S1. [PDF file](113 KB)

PDF

Supplementary Fig. S2. [PDF file](99 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error