1887

Abstract

, a soil Gram-positive bacterium used for industrial amino acid production, was found to grow optimally at pH 7·0–9·0 when incubated in 5 litre fermenters under pH-controlled conditions. The highest biomass was accumulated at pH 9·0. Growth still occurred at pH 9·5 but at a reduced rate. The expression of the pH-regulated FF ATPase operon (containing the eight genes ) was induced at alkaline pH. A 7·5 kb transcript, corresponding to the eight-gene operon, was optimally expressed at pH 9·0. The same occurred with a 1·2 kb transcript corresponding to the gene. RT-PCR studies confirmed the alkaline pH induction of the FF operon and the existence of the gene. The gene, located upstream of the FF operon, was expressed at a lower level than the polycistronic 7·5 kb mRNA, from a separate promoter (P-atp1). Expression of the major promoter of the FF operon, designated P-atp2, and the P-atp1 promoter was quantified by coupling them to the pET2 promoter-probe vector. Both P-atp1 and P-atp2 were functional in and . Primer extension analysis identified one transcription start point inside each of the two promoter regions. The P-atp1 promoter fitted the consensus sequence of promoters recognized by the vegetative factor of , whereas the −35 and −10 boxes of P-atp2 fitted the consensus sequence for -recognized promoters C/GG/AC 17–22 nt /GTT/, known to be involved in expression of heat-shock and other stress-response genes. These results suggest that the FF operon is highly expressed at alkaline pH, probably using a RNA polymerase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28383-0
2006-01-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/1/11.html?itemId=/content/journal/micro/10.1099/mic.0.28383-0&mimeType=html&fmt=ahah

References

  1. Amaresh, D. & Ljungdahl, L. G. ( 1997; ). Composition and primary structure of the F1F0 synthase from the obligately anaerobic bacterium Clostridium thermoaceticum. J Bacteriol 179, 3746–3755.
    [Google Scholar]
  2. Barreiro, C., González-Lavado, E. & Martín, J. F. ( 2001; ). Organization and transcriptional analysis of a six-gene cluster around the rplK-rplA operon of Corynebacterium glutamicum encoding the ribosomal proteins L11 and L1. Appl Environ Microbiol 67, 2183–2190.[CrossRef]
    [Google Scholar]
  3. Barreiro, C., González-Lavado, E., Pátek, M. & Martín, J. F. ( 2004; ). Transcriptional analysis of the groES-groEL2 and dnaK genes in Corynebacterium glutamicum: characterization of heat shock-induced promoters. J Bacteriol 186, 4813–4817.[CrossRef]
    [Google Scholar]
  4. Bathe, B., Kalinowski, J. & Pühler, A. ( 1996; ). A physical and genetic map of the Corynebacterium glutamicum ATCC 13032 chromosome. Mol Gen Genet 252, 255–265.
    [Google Scholar]
  5. Bott, M. & Niebisch, A. ( 2003; ). The respiratory chain of Corynebacterium glutamicum. J Biotechnol 104, 129–153.[CrossRef]
    [Google Scholar]
  6. Cadenas, R. F., Martín, J. F. & Gil, J. A. ( 1991; ). Construction and characterization of promoter-probe vectors for corynebacteria using the kanamycin-resistance reporter gene. Gene 98, 117–121.[CrossRef]
    [Google Scholar]
  7. Correia, A., Martín, J. F. & Castro, J. M. ( 1994; ). Pulsed-field gel electrophoresis analysis of the genome of amino acid producing corynebacteria: chromosome sizes and diversity of restriction patterns. Microbiology 140, 2841–2847.[CrossRef]
    [Google Scholar]
  8. Eikmanns, B. J., Thum-Schmitz, L., Eggeling, K. U., Ludtke, K. U. & Sahm, H. ( 1994; ). Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 140, 1817–1828.[CrossRef]
    [Google Scholar]
  9. Foster, J. W. ( 1999; ). When protons attack: microbial strategies of acid adaptation. Curr Opin Microbiol 2, 170–174.[CrossRef]
    [Google Scholar]
  10. Frasch, W. D. ( 2000; ). The participation of metals in the mechanism of the F1-ATPase. Biochim Biophys Acta 1458, 310–325.[CrossRef]
    [Google Scholar]
  11. Gilmour, R., Messner, P., Guffanti, A. A., Kent, R., Scheberl, A., Kendrick, N. & Krulwich, T. A. ( 2000; ). Two-dimensional gel electrophoresis analyses of pH-dependent protein expression in facultatively alkaliphilic Bacillus pseudofirmus OF4 lead to characterization of an S-layer protein with a role in alkaliphily. J Bacteriol 182, 5969–5981.[CrossRef]
    [Google Scholar]
  12. Hensel, M., Lill, H., Schmid, R., Deckers-Hebestreit, G. & Altendorf, K. ( 1995; ). The ATP synthase (F1F0) of Streptomyces lividans: sequencing of the atp operon and phylogenetic considerations with subunit beta. Gene 152, 11–17.[CrossRef]
    [Google Scholar]
  13. Hermann, T. ( 2003; ). Industrial production of amino acids by coryneform bacteria. J Biotechnol 104, 155–172.[CrossRef]
    [Google Scholar]
  14. Hicks, D. B., Wang, Z., Wei, Y., Kent, R., Guffanti, A. A., Banciu, H., Bechhofer, D. H. & Krulwich, T. A. ( 2003; ). A tenth atp gene and the conserved atpI gene of a Bacillus atp operon have a role in Mg2+ uptake. Proc Natl Acad Sci U S A 100, 10213–10218.[CrossRef]
    [Google Scholar]
  15. Ikeda, M. & Nakagawa, S. ( 2003; ). The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62, 99–109.[CrossRef]
    [Google Scholar]
  16. Ivey, D. M. & Krulwich, T. A. ( 1991; ). Organization and nucleotide sequence of the atp genes encoding the ATP synthase from alkaliphilic Bacillus firmus OF4. Mol Gen Genet 229, 292–300.[CrossRef]
    [Google Scholar]
  17. Kalinowski, J., Bathe, B., Bartels, D. & 24 other authors ( 2003; ). The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104, 5–25.[CrossRef]
    [Google Scholar]
  18. Kasimoglu, E., Park, S. J., Malek, J., Tseng, C. P. & Gunsalus, R. P. ( 1996; ). Transcriptional regulation of the proton-translocating ATPase (atpIBEFHAGDC) operon of Escherichia coli: control by cell growth rate. J Bacteriol 178, 5563–5567.
    [Google Scholar]
  19. Kinoshita, S. & Tanaka, K. ( 1972; ). Glutamic acid. In The Microbial Production of Amino Acids, pp. 263–324. New York: Halsted Press.
  20. Kirchner, O. & Tauch, A. ( 2003; ). Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol 104, 287–299.[CrossRef]
    [Google Scholar]
  21. Koebmann, B. J., Nilsson, D., Kuipers, O. P. & Jensen, P. R. ( 2000; ). The membrane-bound H+-ATPase complex is essential for growth of Lactococcus lactis. J Bacteriol 182, 4738–4743.[CrossRef]
    [Google Scholar]
  22. Kuhnert, W. L., Zheng, G., Faustoferri, R. C. & Quivey, R. G., Jr ( 2004; ). The F-ATPase operon promoter of Streptococcus mutans is transcriptionally regulated in response to external pH. J Bacteriol 186, 8524–8528.[CrossRef]
    [Google Scholar]
  23. Kullen, M. J. & Klaenhammer, T. R. ( 1999; ). Identification of the pH-inducible, proton-translocating F1F0-ATPase (atpBEFGAGDC) operon of Lactobacillus acidophilus by differential display: gene structure, cloning and characterization. Mol Microbiol 33, 1152–1161.
    [Google Scholar]
  24. Leuchtenberger, W. ( 1996; ). Amino acids – technical production and use. In Biotechnology: Products of Primary Metabolism 6, pp. 465–502. Edited by H.-J. Rehm & G. Reed. Weinheim: VCH-Verlag.
  25. Martín, J. F. ( 1989; ). Molecular genetics of amino acid-producing corynebacteria. In Microbial Products: New Approaches, pp. 25–29. Edited by S. Baumberg, I. Hunter & M. Rhodes. Cambridge, UK: Cambridge University Press.
  26. Martín, J. F. & Gil, J. A. ( 1999; ). Corynebacteria. In Manual of Industrial Microbiology and Biotechnology, 2nd edn, pp. 371–379. Edited by A. L. Demain and others. Washington, DC: American Society for Microbiology.
  27. Martín, J. F., Cadenas, R., Malumbres, M., Mateos, L. M., Guerrero, C. & Gil, J. A. ( 1990; ). Construction and utilization of promoter-probe and expression vectors in corynebacteria. Characterization of corynebacterial promoters. In Genetics of Industrial Microorganisms, pp. 283–292. Edited by H. Heslot, J. Davies, J. Florent, L. Bobochon, G. Durant & L. Penasse. Strasbourg: Société Française de Microbiologie.
  28. Martín-Galiano, A. J., Ferrándiz, M. J. & de la Campa, A. G. ( 2001; ). The promoter of the operon encoding the F0F1 ATPase of Streptococcus pneumoniae is inducible by pH. Mol Microbiol 41, 1327–1338.[CrossRef]
    [Google Scholar]
  29. Maurer, L. M., Yohannes, E., Bondurant, S. S., Radmacher, M. & Slonczewski, J. L. ( 2005; ). pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J Bacteriol 187, 304–319.[CrossRef]
    [Google Scholar]
  30. Meier, T., von Ballmoos, C., Neumann, S. & Kaim, G. ( 2003; ). Complete DNA sequence of the atp operon of the sodium-dependent F1F0 ATP synthase from Ilyobacter tartaricus and identification of the encoded subunits. Biochim Biophys Acta 1625, 221–226.[CrossRef]
    [Google Scholar]
  31. Newbury, S. F., Smith, N. H. & Higgins, C. F. ( 1987; ). Differential mRNA stability controls relative gene expression within a polycistronic operon. Cell 51, 1131–1143.[CrossRef]
    [Google Scholar]
  32. Oguiza, J. A., Marcos, A. T., Malumbres, M. & Martín, J. F. ( 1996; ). Multiple sigma factor genes in Brevibacterium lactofermentum: characterization of sigA and sigB. J Bacteriol 178, 550–553.
    [Google Scholar]
  33. Ozaki, A., Katsumata, R., Oka, T. & Furuya, A. ( 1984; ). Functional expression of the genes of Escherichia coli in Gram-positive Corynebacterium glutamicum. Mol Gen Genet 196, 175–178.[CrossRef]
    [Google Scholar]
  34. Pátek, M., Eikmanns, B. J., Pátek, J. & Sahm, H. ( 1996; ). Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif. Microbiology 142, 1297–1309.[CrossRef]
    [Google Scholar]
  35. Pátek, M., Muth, G. & Wohlleben, W. ( 2003a; ). Function of Corynebacterium glutamicum promoters in Escherichia coli, Streptomyces lividans, and Bacillus subtilis. J Biotechnol 104, 325–334.[CrossRef]
    [Google Scholar]
  36. Pátek, M., Nesvera, J., Guyonvarch, A., Reyes, O. & Leblon, G. ( 2003b; ). Promoters of Corynebacterium glutamicum. J Biotechnol 104, 311–323.[CrossRef]
    [Google Scholar]
  37. Patel, A. M. & Dunn, S. D. ( 1995; ). Degradation of Escherichia coli uncB mRNA by multiple endonucleolytic cleavages. J Bacteriol 177, 3917–3922.
    [Google Scholar]
  38. Saito, H. & Kobayashi, H. ( 2003; ). Bacterial responses to alkaline stress. Sci Prog 86, 271–282.[CrossRef]
    [Google Scholar]
  39. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  40. Santana, M., Ionescu, M. S., Vertes, A., Longin, R., Kunst, F., Danchin, A. & Glaser, P. ( 1994; ). Bacillus subtilis F0F1 ATPase: DNA sequence of the atp operon and characterization of atp mutants. J Bacteriol 176, 6802–6811.
    [Google Scholar]
  41. Schneppe, B., Deckers-Hebestreit, G., McCarthy, J. E. & Altendorf, K. ( 1991; ). Translation of the first gene of the Escherichia coli unc operon. Selection of the start codon and control of initiation efficiency. J Biol Chem 266, 21090–21098.
    [Google Scholar]
  42. Small, P., Blankenhorn, D., Welty, D., Zinser, E. & Slonczewski, J. L. ( 1994; ). Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH. J Bacteriol 176, 1729–1737.
    [Google Scholar]
  43. Storz, G. & Hengge-Aronis, R. ( 2000; ). Bacterial Stress Responses. Washington, DC: American Society for Microbiology.
  44. Van der Rest, M. E., Lange, C. & Molenaar, D. ( 1999; ). A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52, 541–545.[CrossRef]
    [Google Scholar]
  45. Văsicová, P., Abrhámová, Z., Nesvera, J., Pátek, M., Sahm, H. & Eikmanns, B. ( 1998; ). Integrative and autonomously replicating vectors for analysis of promoters in Corynebacterium glutamicum. Biotechnol Tech 12, 743–746.[CrossRef]
    [Google Scholar]
  46. Văsicová, P., Pátek, M., Nesvera, J., Sahm, H. & Eikmanns, B. ( 1999; ). Analysis of the Corynebacterium glutamicum dapA promoter. J Bacteriol 181, 6188–6191.
    [Google Scholar]
  47. Walker, J. E., Saraste, M. & Gay, J. ( 1984; ). The unc operon: nucleotide sequence, regulation and structure of ATP-synthase. Biochim Biophys Acta 768, 164–200.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28383-0
Loading
/content/journal/micro/10.1099/mic.0.28383-0
Loading

Data & Media loading...

Supplements

vol. , part 1, pp. 11 - 21

Preliminary experiments. Growth of ATCC 13032 (in TSB medium) in shake flasks, at different pH values: 5.0 (crosses); 6.0 (diamonds); 7.0 (squares); 9.0 (triangles); and 10.0 (circles). [PDF](64 kb)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error