1887

Abstract

, a soil Gram-positive bacterium used for industrial amino acid production, was found to grow optimally at pH 7·0–9·0 when incubated in 5 litre fermenters under pH-controlled conditions. The highest biomass was accumulated at pH 9·0. Growth still occurred at pH 9·5 but at a reduced rate. The expression of the pH-regulated FF ATPase operon (containing the eight genes ) was induced at alkaline pH. A 7·5 kb transcript, corresponding to the eight-gene operon, was optimally expressed at pH 9·0. The same occurred with a 1·2 kb transcript corresponding to the gene. RT-PCR studies confirmed the alkaline pH induction of the FF operon and the existence of the gene. The gene, located upstream of the FF operon, was expressed at a lower level than the polycistronic 7·5 kb mRNA, from a separate promoter (P-atp1). Expression of the major promoter of the FF operon, designated P-atp2, and the P-atp1 promoter was quantified by coupling them to the pET2 promoter-probe vector. Both P-atp1 and P-atp2 were functional in and . Primer extension analysis identified one transcription start point inside each of the two promoter regions. The P-atp1 promoter fitted the consensus sequence of promoters recognized by the vegetative factor of , whereas the −35 and −10 boxes of P-atp2 fitted the consensus sequence for -recognized promoters C/GG/AC 17–22 nt /GTT/, known to be involved in expression of heat-shock and other stress-response genes. These results suggest that the FF operon is highly expressed at alkaline pH, probably using a RNA polymerase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28383-0
2006-01-01
2020-08-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/1/11.html?itemId=/content/journal/micro/10.1099/mic.0.28383-0&mimeType=html&fmt=ahah

References

  1. Amaresh D, Ljungdahl L. G. 1997; Composition and primary structure of the F[sub]1[/sub]F[sub]0[/sub] synthase from the obligately anaerobic bacterium Clostridium thermoaceticum . J Bacteriol179:3746–3755
    [Google Scholar]
  2. Barreiro C, González-Lavado E, Martín J. F. 2001; Organization and transcriptional analysis of a six-gene cluster around the rplK-rplA operon of Corynebacterium glutamicum encoding the ribosomal proteins L11 and L1. Appl Environ Microbiol67:2183–2190[CrossRef]
    [Google Scholar]
  3. Barreiro C, González-Lavado E, Pátek M, Martín J. F. 2004; Transcriptional analysis of the groES-groEL2 and dnaK genes in Corynebacterium glutamicum : characterization of heat shock-induced promoters. J Bacteriol186:4813–4817[CrossRef]
    [Google Scholar]
  4. Bathe B, Kalinowski J, Pühler A. 1996; A physical and genetic map of the Corynebacterium glutamicum ATCC 13032 chromosome. Mol Gen Genet252:255–265
    [Google Scholar]
  5. Bott M, Niebisch A. 2003; The respiratory chain of Corynebacterium glutamicum . J Biotechnol104:129–153[CrossRef]
    [Google Scholar]
  6. Cadenas R. F, Martín J. F, Gil J. A. 1991; Construction and characterization of promoter-probe vectors for corynebacteria using the kanamycin-resistance reporter gene. Gene98:117–121[CrossRef]
    [Google Scholar]
  7. Correia A, Martín J. F, Castro J. M. 1994; Pulsed-field gel electrophoresis analysis of the genome of amino acid producing corynebacteria: chromosome sizes and diversity of restriction patterns. Microbiology140:2841–2847[CrossRef]
    [Google Scholar]
  8. Eikmanns B. J, Thum-Schmitz L, Eggeling K. U, Ludtke K. U, Sahm H. 1994; Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology140:1817–1828[CrossRef]
    [Google Scholar]
  9. Foster J. W. 1999; When protons attack: microbial strategies of acid adaptation. Curr Opin Microbiol2:170–174[CrossRef]
    [Google Scholar]
  10. Frasch W. D. 2000; The participation of metals in the mechanism of the F[sub]1[/sub]-ATPase. Biochim Biophys Acta1458:310–325[CrossRef]
    [Google Scholar]
  11. Gilmour R, Messner P, Guffanti A. A, Kent R, Scheberl A, Kendrick N, Krulwich T. A. 2000; Two-dimensional gel electrophoresis analyses of pH-dependent protein expression in facultatively alkaliphilic Bacillus pseudofirmus OF4 lead to characterization of an S-layer protein with a role in alkaliphily. J Bacteriol182:5969–5981[CrossRef]
    [Google Scholar]
  12. Hensel M, Lill H, Schmid R, Deckers-Hebestreit G, Altendorf K. 1995; The ATP synthase (F[sub]1[/sub]F[sub]0[/sub]) of Streptomyces lividans : sequencing of the atp operon and phylogenetic considerations with subunit beta. Gene152:11–17[CrossRef]
    [Google Scholar]
  13. Hermann T. 2003; Industrial production of amino acids by coryneform bacteria. J Biotechnol104:155–172[CrossRef]
    [Google Scholar]
  14. Hicks D. B, Wang Z, Wei Y, Kent R, Guffanti A. A, Banciu H, Bechhofer D. H, Krulwich T. A. 2003; A tenth atp gene and the conserved atpI gene of a Bacillus atp operon have a role in Mg[sup]2+[/sup] uptake. Proc Natl Acad Sci U S A100:10213–10218[CrossRef]
    [Google Scholar]
  15. Ikeda M, Nakagawa S. 2003; The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol62:99–109[CrossRef]
    [Google Scholar]
  16. Ivey D. M, Krulwich T. A. 1991; Organization and nucleotide sequence of the atp genes encoding the ATP synthase from alkaliphilic Bacillus firmus OF4. Mol Gen Genet229:292–300[CrossRef]
    [Google Scholar]
  17. Kalinowski J, Bathe B, Bartels D. 24 other authors 2003; The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol104:5–25[CrossRef]
    [Google Scholar]
  18. Kasimoglu E, Park S. J, Malek J, Tseng C. P, Gunsalus R. P. 1996; Transcriptional regulation of the proton-translocating ATPase (atpIBEFHAGDC) operon of Escherichia coli : control by cell growth rate. J Bacteriol178:5563–5567
    [Google Scholar]
  19. Kinoshita S, Tanaka K. 1972; Glutamic acid. In The Microbial Production of Amino Acids New York: Halsted Press; pp263–324
    [Google Scholar]
  20. Kirchner O, Tauch A. 2003; Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum . J Biotechnol104:287–299[CrossRef]
    [Google Scholar]
  21. Koebmann B. J, Nilsson D, Kuipers O. P, Jensen P. R. 2000; The membrane-bound H[sup]+[/sup]-ATPase complex is essential for growth of Lactococcus lactis . J Bacteriol182:4738–4743[CrossRef]
    [Google Scholar]
  22. Kuhnert W. L, Zheng G, Faustoferri R. C, Quivey R. G. Jr. 2004; The F-ATPase operon promoter of Streptococcus mutans is transcriptionally regulated in response to external pH. J Bacteriol186:8524–8528[CrossRef]
    [Google Scholar]
  23. Kullen M. J, Klaenhammer T. R. 1999; Identification of the pH-inducible, proton-translocating F[sub]1[/sub]F[sub]0[/sub]-ATPase (atpBEFGAGDC) operon of Lactobacillus acidophilus by differential display: gene structure, cloning and characterization. Mol Microbiol33:1152–1161
    [Google Scholar]
  24. Leuchtenberger W. 1996; Amino acids – technical production and use. In Biotechnology: Products of Primary Metabolism 6 pp 465–502 Edited by Rehm H.-J., Reed G.. Weinheim: VCH-Verlag;
    [Google Scholar]
  25. Martín J. F. 1989; Molecular genetics of amino acid-producing corynebacteria. In Microbial Products: New Approaches pp 25–29 Edited by Baumberg S., Hunter I., Rhodes M.. Cambridge, UK: Cambridge University Press;
    [Google Scholar]
  26. Martín J. F, Gil J. A. 1999; Corynebacteria. In Manual of Industrial Microbiology and Biotechnology, 2nd edn. pp 371–379 Edited by Demain A. L..others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Martín J. F, Cadenas R, Malumbres M, Mateos L. M, Guerrero C, Gil J. A. 1990; Construction and utilization of promoter-probe and expression vectors in corynebacteria. Characterization of corynebacterial promoters. In Genetics of Industrial Microorganisms pp 283–292 Edited by Heslot H., Davies J., Florent J., Bobochon L., Durant G., Penasse L.. Strasbourg: Société Française de Microbiologie;
    [Google Scholar]
  28. Martín-Galiano A. J, Ferrándiz M. J, de la Campa A. G. 2001; The promoter of the operon encoding the F[sub]0[/sub]F[sub]1[/sub] ATPase of Streptococcus pneumoniae is inducible by pH. Mol Microbiol41:1327–1338[CrossRef]
    [Google Scholar]
  29. Maurer L. M, Yohannes E, Bondurant S. S, Radmacher M, Slonczewski J. L. 2005; pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J Bacteriol187:304–319[CrossRef]
    [Google Scholar]
  30. Meier T, von Ballmoos C, Neumann S, Kaim G. 2003; Complete DNA sequence of the atp operon of the sodium-dependent F[sub]1[/sub]F[sub]0[/sub] ATP synthase from Ilyobacter tartaricus and identification of the encoded subunits. Biochim Biophys Acta 1625;221–226[CrossRef]
    [Google Scholar]
  31. Newbury S. F, Smith N. H, Higgins C. F. 1987; Differential mRNA stability controls relative gene expression within a polycistronic operon. Cell51:1131–1143[CrossRef]
    [Google Scholar]
  32. Oguiza J. A, Marcos A. T, Malumbres M, Martín J. F. 1996; Multiple sigma factor genes in Brevibacterium lactofermentum : characterization of sigA and sigB . J Bacteriol178:550–553
    [Google Scholar]
  33. Ozaki A, Katsumata R, Oka T, Furuya A. 1984; Functional expression of the genes of Escherichia coli in Gram-positive Corynebacterium glutamicum . Mol Gen Genet196:175–178[CrossRef]
    [Google Scholar]
  34. Pátek M, Eikmanns B. J, Pátek J, Sahm H. 1996; Promoters from Corynebacterium glutamicum : cloning, molecular analysis and search for a consensus motif. Microbiology142:1297–1309[CrossRef]
    [Google Scholar]
  35. Pátek M, Muth G., Wohlleben W. 2003a; Function of Corynebacterium glutamicum promoters in Escherichia coli , Streptomyces lividans , and Bacillus subtilis . J Biotechnol104:325–334[CrossRef]
    [Google Scholar]
  36. Pátek M, Nesvera J, Guyonvarch A, Reyes O, Leblon G. 2003b; Promoters of Corynebacterium glutamicum . J Biotechnol104:311–323[CrossRef]
    [Google Scholar]
  37. Patel A. M, Dunn S. D. 1995; Degradation of Escherichia coli uncB mRNA by multiple endonucleolytic cleavages. J Bacteriol177:3917–3922
    [Google Scholar]
  38. Saito H, Kobayashi H. 2003; Bacterial responses to alkaline stress. Sci Prog86:271–282[CrossRef]
    [Google Scholar]
  39. Sambrook J, Russell D. W. 2001; Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Santana M, Ionescu M. S, Vertes A, Longin R, Kunst F, Danchin A, Glaser P. 1994; Bacillus subtilis F[sub]0[/sub]F[sub]1[/sub] ATPase: DNA sequence of the atp operon and characterization of atp mutants. J Bacteriol176:6802–6811
    [Google Scholar]
  41. Schneppe B, Deckers-Hebestreit G, McCarthy J. E, Altendorf K. 1991; Translation of the first gene of the Escherichia coli unc operon. Selection of the start codon and control of initiation efficiency. J Biol Chem266:21090–21098
    [Google Scholar]
  42. Small P, Blankenhorn D, Welty D, Zinser E, Slonczewski J. L. 1994; Acid and base resistance in Escherichia coli and Shigella flexneri : role of rpoS and growth pH. J Bacteriol176:1729–1737
    [Google Scholar]
  43. Storz G, Hengge-Aronis R. 2000; Bacterial Stress Responses Washington, DC: American Society for Microbiology;
    [Google Scholar]
  44. Van der Rest M. E, Lange C, Molenaar D. 1999; A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol52:541–545[CrossRef]
    [Google Scholar]
  45. Văsicová P, Abrhámová Z, Nesvera J, Pátek M, Sahm H., Eikmanns B. 1998; Integrative and autonomously replicating vectors for analysis of promoters in Corynebacterium glutamicum . Biotechnol Tech12:743–746[CrossRef]
    [Google Scholar]
  46. Văsicová P, Pátek M., Nesvera J, Sahm H, Eikmanns B. 1999; Analysis of the Corynebacterium glutamicum dapA promoter. J Bacteriol181:6188–6191
    [Google Scholar]
  47. Walker J. E, Saraste M, Gay J. 1984; The unc operon: nucleotide sequence, regulation and structure of ATP-synthase. Biochim Biophys Acta768:164–200[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28383-0
Loading
/content/journal/micro/10.1099/mic.0.28383-0
Loading

Data & Media loading...

Supplements

vol. , part 1, pp. 11 - 21

Preliminary experiments. Growth of ATCC 13032 (in TSB medium) in shake flasks, at different pH values: 5.0 (crosses); 6.0 (diamonds); 7.0 (squares); 9.0 (triangles); and 10.0 (circles). [PDF](64 kb)



PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error