1887

Abstract

The effector proteins of the type III secretion systems of many bacterial pathogens act in a coordinated manner to subvert host cells and facilitate the development and progression of disease. It is unclear whether interactions between the type-III-secreted proteins of result in similar effects on the disease process. We have previously characterized the contributions to pathogenesis of the type-III-secreted proteins ExoS, ExoT and ExoU when secreted individually. In this study, we extend our prior work to determine whether these proteins have greater than expected effects on virulence when secreted in combination. cytotoxicity and anti-internalization activities were not enhanced when effector proteins were secreted in combinations rather than alone. Likewise in a mouse model of pneumonia, bacterial burden in the lungs, dissemination and mortality attributable to ExoS, ExoT and ExoU were not synergistically increased when combinations of these effector proteins were secreted. Because of the absence of an appreciable synergistic increase in virulence when multiple effector proteins were secreted in combination, we conclude that any cooperation between ExoS, ExoT and ExoU does not translate into a synergistically significant enhancement of disease severity as measured by these assays.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28368-0
2006-01-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/1/143.html?itemId=/content/journal/micro/10.1099/mic.0.28368-0&mimeType=html&fmt=ahah

References

  1. Berthelot, P., Attree, I., Plesiat, P., Chabert, J., de Bentzmann, S., Pozzetto, B. & Grattard, F. ( 2003; ). Genotypic and phenotypic analysis of type III secretion system in a cohort of Pseudomonas aeruginosa bacteremia isolates: evidence for a possible association between O serotypes and exo genes. J Infect Dis 188, 512–518.[CrossRef]
    [Google Scholar]
  2. Coburn, J. & Frank, D. ( 1999; ). Macrophages and epithelial cells respond differently to the Pseudomonas aeruginosa type III secretion system. Infect Immun 67, 3151–3154.
    [Google Scholar]
  3. Comolli, J. C., Hauser, A. R., Waite, L., Whitchurch, C. B., Mattick, J. S. & Engel, J. N. ( 1999; ). Pseudomonas aeruginosa gene products PilT and PilU are required for cytotoxicity in vitro and virulence in a mouse model of acute pneumonia. Infect Immun 67, 3625–3630.
    [Google Scholar]
  4. Cornelis, G. R. ( 2002; ). The Yersinia Ysc-Yop ‘type III’ weaponry. Nat Rev Mol Cell Biol 3, 742–752.[CrossRef]
    [Google Scholar]
  5. Cowell, B. A., Chen, D. Y., Frank, D. W., Vallis, A. J. & Fleiszig, S. M. J. ( 2000; ). ExoT of cytotoxic Pseudomonas aeruginosa prevents uptake by corneal epithelial cells. Infect Immun 68, 403–406.[CrossRef]
    [Google Scholar]
  6. Evans, D. J., Frank, D. W., Finck-Barbancon, V., Wu, C. & Fleiszig, S. M. ( 1998; ). Pseudomonas aeruginosa invasion and cytotoxicity are independent events, both of which involve protein tyrosine kinase activity. Infect Immun 66, 1453–1459.
    [Google Scholar]
  7. Feltman, H., Schulert, G., Khan, S., Jain, M., Peterson, L. & Hauser, A. R. ( 2001; ). Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. Microbiology 147, 2659–2669.
    [Google Scholar]
  8. Finck-Barbançon, V. & Frank, D. W. ( 2001; ). Multiple domains are required for the toxic activity of Pseudomonas aeruginosa ExoU. J Bacteriol 183, 4330–4344.[CrossRef]
    [Google Scholar]
  9. Finck-Barbançon, V., Goranson, J., Zhu, L., Sawa, T., Wiener-Kronish, J. P., Fleiszig, S. M. J., Wu, C., Mende-Mueller, L. & Frank, D. ( 1997; ). ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol Microbiol 25, 547–557.[CrossRef]
    [Google Scholar]
  10. Fleiszig, S. M. J., Wiener-Kronish, J. P., Miyazaki, H., Vallas, V., Mostov, K., Kanada, D., Sawa, T., Yen, T. S. B. & Frank, D. ( 1997; ). Pseudomonas aeruginosa-mediated cytotoxicity and invasion correlate with distinct genotypes at the loci encoding exoenzyme S. Infect Immun 65, 579–586.
    [Google Scholar]
  11. Frank, D. W. ( 1997; ). The exoenzyme S regulon of Pseudomonas aeruginosa. Mol Microbiol 26, 621–629.[CrossRef]
    [Google Scholar]
  12. Fraylick, J. E., La Rocque, J. R., Vincent, T. S. & Olson, J. C. ( 2001; ). Independent and coordinate effects of ADP-ribosyltransferase and GTPase-activating activities of exoenzyme S on HT-29 epithelial cell function. Infect Immun 69, 5318–5328.[CrossRef]
    [Google Scholar]
  13. Frithz-Lindsten, E., Du, Y., Rosqvist, R. & Forsberg, A. ( 1997; ). Intracellular targeting of exoenzyme S of Pseudomonas aeruginosa via type III-dependent translocation induces phagocytosis resistance, cytotoxicity and disruption of actin microfilaments. Mol Microbiol 25, 1125–1139.[CrossRef]
    [Google Scholar]
  14. Fu, Y. & Galan, J. E. ( 1999; ). A salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401, 293–297.[CrossRef]
    [Google Scholar]
  15. Garrity-Ryan, L., Kazmierczak, B., Kowal, R., Comolli, J., Hauser, A. & Engel, J. N. ( 2000; ). The arginine finger domain of ExoT contributes to actin cytoskeleton disruption and inhibition of internalization of Pseudomonas aeruginosa by epithelial cells and macrophages. Infect Immun 68, 7100–7113.[CrossRef]
    [Google Scholar]
  16. Goehring, U.-M., Schmidt, G., Pederson, K. J., Aktories, K. & Barbieri, J. T. ( 1999; ). The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J Biol Chem 274, 36369–36372.[CrossRef]
    [Google Scholar]
  17. Grosdent, N., Maridonneau-Parini, I., Sory, M. P. & Cornelis, G. R. ( 2002; ). Role of Yops and adhesins in resistance of Yersinia enterocolitica to phagocytosis. Infect Immun 70, 4165–4176.[CrossRef]
    [Google Scholar]
  18. Guiney, D. G. & Lesnick, M. ( 2005; ). Targeting of the actin cytoskeleton during infection by Salmonella strains. Clin Immunol 114, 248–255.[CrossRef]
    [Google Scholar]
  19. Ha, U. & Jin, S. ( 2001; ). Growth phase-dependent invasion of Pseudomonas aeruginosa and its survival with HeLa cells. Infect Immun 69, 4398–4406.[CrossRef]
    [Google Scholar]
  20. Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R. & Galan, J. E. ( 1998; ). Salmonella typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93, 815–826.[CrossRef]
    [Google Scholar]
  21. Hauser, A. R. & Engel, J. N. ( 1999; ). Pseudomonas aeruginosa induces type III secretion-mediated apoptosis of macrophages and epithelial cells. Infect Immun 67, 5530–5537.
    [Google Scholar]
  22. Hauser, A. R., Kang, P. J. & Engel, J. ( 1998a; ). PepA, a novel secreted protein of Pseudomonas aeruginosa, is necessary for cytotoxicity and virulence. Mol Microbiol 27, 807–818.[CrossRef]
    [Google Scholar]
  23. Hauser, A. R., Kang, P. J., Fleiszig, S. J. M., Mostov, K. & Engel, J. ( 1998b; ). Defects in type III secretion correlate with internalization of Pseudomonas aeruginosa by epithelial cells. Infect Immun 66, 1413–1420.
    [Google Scholar]
  24. Hauser, A. R., Cobb, E., Bodí, M., Mariscal, D., Vallés, J., Engel, J. N. & Rello, J. ( 2002; ). Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Crit Care Med 30, 521–528.[CrossRef]
    [Google Scholar]
  25. Henriksson, M. L., Rosqvist, R., Telepnev, M., Wolf-Watz, H. & Hallberg, B. ( 2000; ). Ras effector pathway activation by epidermal growth factor is inhibited in vivo by exoenzyme S ADP-ribosylation of Ras. Biochem J 347, 217–222.[CrossRef]
    [Google Scholar]
  26. Henriksson, M. L., Sundin, C., Jansson, A. L., Forsberg, A., Palmer, R. H. & Hallberg, B. ( 2002; ). Exoenzyme S shows selective ADP-ribosylation and GTPase-activating protein (GAP) activities towards small GTPases in vivo. Biochem J 367, 617–628.[CrossRef]
    [Google Scholar]
  27. Holder, I. A., Neely, A. N. & Frank, D. W. ( 2001; ). Type III secretion/intoxication system important in virulence of Pseudomonas aeruginosa infections in burns. Burns 27, 129–130.[CrossRef]
    [Google Scholar]
  28. Ichikawa, J. K., English, S. B., Wolfgang, M. C., Jackson, R., Butte, A. J. & Lory, S. ( 2005; ). Genome-wide analysis of host responses to the Pseudomonas aeruginosa type III secretion system yields synergistic effects. Cell Microbiol 7, 1635–1646.[CrossRef]
    [Google Scholar]
  29. Jain, M., Ramirez, D., Seshadri, R. & 7 other authors ( 2004; ). Type III secretion phenotypes of Pseudomonas aeruginosa strains change during infection of individuals with cystic fibrosis. J Clin Microbiol 42, 5229–5237.[CrossRef]
    [Google Scholar]
  30. Kaufman, M. R., Jia, J., Zeng, L., Ha, U., Chow, M. & Jin, S. ( 2000; ). Pseudomonas aeruginosa mediated apoptosis requires the ADP-ribosylating activity of ExoS. Microbiology 146, 2531–2541.
    [Google Scholar]
  31. Krall, R., Schmidt, G., Aktories, K. & Barbieri, J. T. ( 2000; ). Pseudomonas aeruginosa ExoT is a Rho GTPase-activating protein. Infect Immun 68, 6066–6068.[CrossRef]
    [Google Scholar]
  32. Krall, R., Sun, J., Pederson, K. J. & Barbieri, J. T. ( 2002; ). In vivo rho GTPase-activating protein activity of Pseudomonas aeruginosa cytotoxin ExoS. Infect Immun 70, 360–367.[CrossRef]
    [Google Scholar]
  33. Lee, V. T., Smith, R. S., Tummler, B. & Lory, S. ( 2005; ). Activities of Pseudomonas aeruginosa effectors secreted by the Type III secretion system in vitro and during infection. Infect Immun 73, 1695–1705.[CrossRef]
    [Google Scholar]
  34. Lomholt, J. A., Poulsen, K. & Kilian, M. ( 2001; ). Epidemic population structure of Pseudomonas aeruginosa: evidence for a clone that is pathogenic to the eye and that has a distinct combination of virulence factors. Infect Immun 69, 6284–6295.[CrossRef]
    [Google Scholar]
  35. McGuffie, E. M., Fraylick, J. E., Hazen-Martin, D. J., Vincent, T. S. & Olson, J. C. ( 1999; ). Differential sensitivity of human epithelial cells to Pseudomonas aeruginosa exoenzyme S. Infect Immun 67, 3494–3503.
    [Google Scholar]
  36. Miyata, S., Casey, M., Frank, D. W., Ausubel, F. M. & Drenkard, E. ( 2003; ). Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in Pseudomonas aeruginosa pathogenesis. Infect Immun 71, 2404–2413.[CrossRef]
    [Google Scholar]
  37. Nicas, T. I. & Iglewski, B. H. ( 1984; ). Isolation and characterization of transposon-induced mutants of Pseudomonas aeruginosa deficient in production of exoenzyme S. Infect Immun 45, 470–474.
    [Google Scholar]
  38. Olson, J. C., McGuffie, E. M. & Frank, D. W. ( 1997; ). Effects of differential expression of the 49-kilodalton exoenzyme S by Pseudomonas aeruginosa on cultured eukaryotic cells. Infect Immun 65, 248–256.
    [Google Scholar]
  39. Olson, J. C., Fraylick, J. E., McGuffie, E. M., Dolan, K. M., Yahr, T. L., Frank, D. W. & Vincent, T. S. ( 1999; ). Interruption of multiple cellular processes in HT-29 epithelial cells by Pseudomonas aeruginosa exoenzyme S. Infect Immun 67, 2847–2854.
    [Google Scholar]
  40. Pankhaniya, R. R., Tamura, M., Allmond, L. R., Moriyama, K., Ajayi, T., Wiener-Kronish, J. P. & Sawa, T. ( 2004; ). Pseudomonas aeruginosa causes acute lung injury via the catalytic activity of the patatin-like phospholipase domain of ExoU. Crit Care Med 32, 2293–2299.
    [Google Scholar]
  41. Pederson, K. J. & Barbieri, J. T. ( 1998; ). Intracellular expression of the ADP-ribosyltransferase domain of Pseudomonas aeruginosa exoenzyme S is cytotoxic to eukaryotic cells. Mol Microbiol 30, 751–759.[CrossRef]
    [Google Scholar]
  42. Pederson, K. J., Vallis, A. J., Aktories, K., Frank, D. W. & Barbieri, J. T. ( 1999; ). The amino-terminal domain of Pseudomonas aeruginosa ExoS disrupts actin filaments via small-molecular-weight GTP-binding proteins. Mol Microbiol 32, 393–401.[CrossRef]
    [Google Scholar]
  43. Phillips, R. M., Six, D. A., Dennis, E. A. & Ghosh, P. ( 2003; ). In vivo phospholipase activity of the Pseudomonas aeruginosa cytotoxin ExoU and protection of mammalian cells with phospholipase A2 inhibitors. J Biol Chem 278, 41326–41332.[CrossRef]
    [Google Scholar]
  44. Pukatzki, S., Kessin, R. H. & Mekalanos, J. J. ( 2002; ). The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum. Proc Natl Acad Sci U S A 99, 3159–3164.[CrossRef]
    [Google Scholar]
  45. Rabin, S. D. P. & Hauser, A. R. ( 2003; ). Pseudomonas aeruginosa ExoU, a toxin transported by the type III secretion system, kills Saccharomyces cerevisiae. Infect Immun 71, 4144–4150.[CrossRef]
    [Google Scholar]
  46. Rabin, S. D. P. & Hauser, A. R. ( 2005; ). Functional regions of the Pseudomonas aeruginosa cytotoxin ExoU. Infect Immun 73, 573–582.[CrossRef]
    [Google Scholar]
  47. Raffatellu, M., Wilson, R. P., Chessa, D., Andrews-Polymenis, H., Tran, Q. T., Lawhon, S., Khare, S., Adams, L. G. & Baumler, A. J. ( 2005; ). SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype typhimurium invasion of epithelial cells. Infect Immun 73, 146–154.[CrossRef]
    [Google Scholar]
  48. Reed, L. & Muench, J. ( 1938; ). A simple method for estimating fifty percent endpoints. Am J Hyg 27, 493–497.
    [Google Scholar]
  49. Rhame, F. S. ( 1979; ). The ecology and epidemiology of Pseudomonas aeruginosa. In Pseudomonas aeruginosa: the Organism, Diseases it Causes, and their Treatment, pp. 31–51. Edited by L. D. Sabath. Bern: Hans Huber Publishers.
  50. Rocha, C. L., Coburn, J., Rucks, E. A. & Olson, J. C. ( 2003; ). Characterization of Pseudomonas aeruginosa exoenzyme S as a bifunctional enzyme in J774A.1 macrophages. Infect Immun 71, 5296–5305.[CrossRef]
    [Google Scholar]
  51. Roy-Burman, A., Savel, R. H., Racine, S., Swanson, B. L., Revadigar, N. S., Fujimoto, J., Sawa, T., Frank, D. W. & Wiener-Kronish, J. P. ( 2001; ). Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis 183, 1767–1774.[CrossRef]
    [Google Scholar]
  52. Sato, H. & Frank, D. W. ( 2004; ). ExoU is a potent intracellular phospholipase. Mol Microbiol 53, 1279–1290.[CrossRef]
    [Google Scholar]
  53. Sato, H., Frank, D. W., Hillard, C. J. & 9 other authors ( 2003; ). The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin, ExoU. EMBO J 22, 2959–2969.[CrossRef]
    [Google Scholar]
  54. Sawa, T., Ohara, M., Kurahashi, K., Twining, S. S., Frank, D., Doroques, D. B., Long, T., Gropper, M. A. & Wiener-Kronish, J. P. ( 1998; ). In vitro cellular toxicity predicts Pseudomonas aeruginosa virulence in lung infections. Infect Immun 66, 3242–3249.
    [Google Scholar]
  55. Schulert, G. S., Feltman, H., Rabin, S. D. P., Martin, C. G., Battle, S. E., Rello, J. & Hauser, A. R. ( 2003; ). Secretion of the toxin ExoU is a marker for highly virulent Pseudomonas aeruginosa isolates obtained from patients with hospital-acquired pneumonia. J Infect Dis 188, 1695–1706.[CrossRef]
    [Google Scholar]
  56. Shaver, C. M. & Hauser, A. R. ( 2004; ). Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung. Infect Immun 72, 6969–6977.[CrossRef]
    [Google Scholar]
  57. Sun, J. & Barbieri, J. T. ( 2003; ). Pseudomonas aeruginosa ExoT ADP-ribosylates CT10 regulator of kinase (Crk) proteins. J Biol Chem 278, 32794–32800.[CrossRef]
    [Google Scholar]
  58. Tamura, M., Ajayi, T., Allmond, L. R., Moriyama, K., Wiener-Kronish, J. P. & Sawa, T. ( 2004; ). Lysophospholipase A activity of Pseudomonas aeruginosa type III secretory toxin ExoU. Biochem Biophys Res Commun 316, 323–331.[CrossRef]
    [Google Scholar]
  59. Tran Van Nhieu, G., Bourdet-Sicard, R., Dumenil, G., Blocker, A. & Sansonetti, P. J. ( 2000; ). Bacterial signals and cell responses during Shigella entry into epithelial cells. Cell Microbiol 2, 187–193.[CrossRef]
    [Google Scholar]
  60. Vallis, A. J., Finck-Barbancon, V., Yahr, T. L. & Frank, D. W. ( 1999; ). Biological effects of Pseudomonas aeruginosa type III-secreted proteins on CHO cells. Infect Immun 67, 2040–2044.
    [Google Scholar]
  61. Vance, R. E., Rietsch, A. & Mekalanos, J. J. ( 2005; ). Role of the type III secreted exoenzymes S, T, and Y in systemic spread of Pseudomonas aeruginosa PAO1 in vivo. Infect Immun 73, 1706–1713.[CrossRef]
    [Google Scholar]
  62. Vincent, T. S., Fraylick, J. E., McGuffie, E. M. & Olson, J. C. ( 1999; ). ADP-ribosylation of oncogenic Ras proteins by Pseudomonas aeruginosa exoenzyme S in vivo. Mol Microbiol 32, 1054–1064.[CrossRef]
    [Google Scholar]
  63. Vogel, H. J. & Bonner, D. M. ( 1956; ). Acetylornithinase of Escherichia coli partial purification and some properties. J Biol Chem 218, 97–106.
    [Google Scholar]
  64. Yahr, T. L., Vallis, A. J., Hancock, M. K., Barbieri, J. T. & Frank, D. W. ( 1998; ). ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc Natl Acad Sci U S A 95, 13899–13904.[CrossRef]
    [Google Scholar]
  65. Zhou, D., Mooseker, M. S. & Galan, J. E. ( 1999a; ). An invasion-associated Salmonella protein modulates the actin-bundling activity of plastin. Proc Natl Acad Sci U S A 96, 10176–10181.[CrossRef]
    [Google Scholar]
  66. Zhou, D., Mooseker, M. S. & Galan, J. E. ( 1999b; ). Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science 283, 2092–2095.[CrossRef]
    [Google Scholar]
  67. Zhou, D., Chen, L. M., Hernandez, L., Shears, S. B. & Galan, J. E. ( 2001; ). A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol Microbiol 39, 248–259.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28368-0
Loading
/content/journal/micro/10.1099/mic.0.28368-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error