1887

Abstract

The major gastrointestinal pathogen is shown to exist as three forms of monospecies biofilm in liquid culture. It attaches to a glass surface; forms an unattached aggregate (floc); and forms a pellicle at the liquid–gas interface. The three forms of biofilm resemble each other when examined by scanning electron microscopy. The biofilm mode of growth confers protection against environmental stress, the microaerobic bacteria in flocs surviving up to 24 days at ambient temperature and atmosphere compared to 12 days survival by planktonic bacteria. The wild-type strains 33106, 32799, 33084 and 31485 did not form flocs, and floc formation was reduced in strains mutant in a putative flagellar protein (FliS) and in a phosphate acetyltransferase (Cj0688). All other strains tested, including strains with mutations affecting capsular polysaccharide (), flagella (), protein glycosylation () and lipo-oligosaccharide () formed flocs. Similarly, all strains tested formed a pellicle and attached to glass except the aflagellate mutant ; pellicle formation was reduced in and mutants. Different mechanisms, therefore, may control formation of different forms of biofilm. It is proposed that these poorly characterized forms of growth are important for the persistence of in the environment and may in part explain the high incidence of Campylobacter-associated food borne disease.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28358-0
2006-02-01
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/2/387.html?itemId=/content/journal/micro/10.1099/mic.0.28358-0&mimeType=html&fmt=ahah

References

  1. Black R. E, Levine M. M, Clements M. L, Hughes T. P, Blaser M. J. 1988; Experimental Campylobacter jejuni infection in humans. J Infect Dis157:472–479[CrossRef]
    [Google Scholar]
  2. Buswell C. M, Herlihy Y. M, Lawrence L. M, McGuiggan J. T, Marsh P. D, Keevil C. W, Leach S. A. 1998; Extended survival and persistence of Campylobacter spp. in water and aquatic biofilms and their detection by immunofluorescent-antibody and -rRNA staining. Appl Environ Microbiol64:733–741
    [Google Scholar]
  3. Costerton J. W, Lewandowski Z, Caldwell D. E, Korber D. R, Lappin-Scott H. M. 1995; Microbial biofilms. Annu Rev Microbiol49:711–745[CrossRef]
    [Google Scholar]
  4. CPLS 2000; Common gastrointestinal infections. Communicable Diseases Report Weekly England and Wales10:9–12
    [Google Scholar]
  5. Danese P. N, Pratt L. A, Kolter R. 2000; Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol182:3593–3596[CrossRef]
    [Google Scholar]
  6. Domingue G, Ellis B, Dasgupta M, Costerton J. W. 1994; Testing antimicrobial susceptibilities of adherent bacteria by a method that incorporates guidelines of the National Committee for Clinical Laboratory Standards. J Clin Microbiol32:2564–2568
    [Google Scholar]
  7. Friedman L, Kolter R. 2004; Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol51:675–690
    [Google Scholar]
  8. Golden N. J, Acheson D. W. 2002; Identification of motility and autoagglutination Campylobacter jejuni mutants by random transposon mutagenesis. Infect Immun70:1761–1771[CrossRef]
    [Google Scholar]
  9. Hall-Stoodley L, Costerton J. W, Stoodley P. 2004; Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol2:95–108[CrossRef]
    [Google Scholar]
  10. Harris R. H, Mitchell R. 1973; The role of polymers in microbial aggregation. Annu Rev Microbiol27:27–50[CrossRef]
    [Google Scholar]
  11. Huber B, Riedel K, Hentzer M, Heydorn A, Gotschlich A, Givskov M, Molin S, Eberl L. 2001; The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology147:2517–2528
    [Google Scholar]
  12. Karlyshev A. V, Wren B. W. 2005; Development and application of an insertional system for gene delivery and expression in Campylobacter jejuni . Appl Environ Microbiol71:4004–4013[CrossRef]
    [Google Scholar]
  13. Karlyshev A. V, Linton D, Gregson N. A, Lastovica A. J, Wren B. W. 2000; Genetic and biochemical evidence of a Campylobacter jejuni capsular polysaccharide that accounts for Penner serotype specificity. Mol Microbiol35:529–541
    [Google Scholar]
  14. Karlyshev A. V, Linton D, Gregson N. A, Wren B. W. 2002; A novel paralogous gene family involved in phase-variable flagella-mediated motility in Campylobacter jejuni . Microbiology148:473–480
    [Google Scholar]
  15. Keevil C. W. 2003; Rapid detection of biofilms and adherent pathogens using scanning confocal laser microscopy and episcopic differential interference contrast microscopy. Water Sci Technol47:105–116
    [Google Scholar]
  16. Kirov S. M, Castrisios M, Shaw J. G. 2004; Aeromonas flagella (polar and lateral) are enterocyte adhesins that contribute to biofilm formation on surfaces. Infect Immun72:1939–1945[CrossRef]
    [Google Scholar]
  17. Linton D, Karlyshev A. V, Hitchen P. G, Morris H. R, Dell A, Gregson N. A, Wren B. W. 2000; Multiple N -acetyl neuraminic acid synthetase (neuB) genes in Campylobacter jejuni : identification and characterization of the gene involved in sialylation of lipo-oligosaccharide. Mol Microbiol35:1120–1134[CrossRef]
    [Google Scholar]
  18. Linton D, Allan E, Karlyshev A. V, Cronshaw A. D, Wren B. W. 2002; Identification of N -acetylgalactosamine-containing glycoproteins PEB3 and CgpA in Campylobacter jejuni . Mol Microbiol43:497–508[CrossRef]
    [Google Scholar]
  19. Loo C. Y, Corliss D. A, Ganeshkumar N. 2000; Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J Bacteriol182:1374–1382[CrossRef]
    [Google Scholar]
  20. Mack D, Rohde H, Dobinsky S, Riedewald J, Nedelmann M, Knobloch J. K, Elsner H. A, Feucht H. H. 2000; Identification of three essential regulatory gene loci governing expression of Staphylococcus epidermidis polysaccharide intercellular adhesin and biofilm formation. Infect Immun68:3799–3807[CrossRef]
    [Google Scholar]
  21. Marchant J, Wren B, Ketley J. 2002; Exploiting genome sequence: predictions for mechanisms of Campylobacter chemotaxis. Trends Microbiol10:155–159[CrossRef]
    [Google Scholar]
  22. McLennan M, Ringoir D, Jarrell H. C, Szymanski C, Gaynor E. 2005; Characterisation of Campylobacter jejuni surface moiety that cross-reacts with calcofluor white: implications for surface carbohydrates, stress response, and pathogenesis. Abstracts of CHRO MeetingF32:87
    [Google Scholar]
  23. Misawa N, Blaser M. J. 2000; Detection and characterization of autoagglutination activity by Campylobacter jejuni . Infect Immun68:6168–6175[CrossRef]
    [Google Scholar]
  24. Moser I, Schroder W. 1997; Hydrophobic characterization of thermophilic Campylobacter species and adhesion to INT 407 cell membranes and fibronectin. Microb Pathog22:155–164[CrossRef]
    [Google Scholar]
  25. Nesper J, Lauriano C. M, Klose K. E, Kapfhammer D, Kraiss A, Reidl J. 2001; Characterization of Vibrio cholerae O1 El tor galU and galE mutants: influence on lipopolysaccharide structure, colonization, and biofilm formation. Infect Immun69:435–445[CrossRef]
    [Google Scholar]
  26. Nichols W. W. 1991; Biofilms, antibiotics and penetration. Rev Med Microbiol2:177–181
    [Google Scholar]
  27. Ornek D, Jayaraman A, Syrett B. C, Hsu C. H, Mansfeld F. B, Wood T. K. 2002; Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or gamma-polyglutamate. Appl Microbiol Biotechnol58:651–657[CrossRef]
    [Google Scholar]
  28. Parkhill J, Wren B. W, Mungall K.18 other authors 2000; The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature403:665–668[CrossRef]
    [Google Scholar]
  29. Pearson A. D, Greenwood M. H, Feltham R. K, Healing T. D, Donaldson J, Jones D. M, Colwell R. R. 1996; Microbial ecology of Campylobacter jejuni in a United Kingdom chicken supply chain: intermittent common source, vertical transmission, and amplification by flock propagation. Appl Environ Microbiol62:4614–4620
    [Google Scholar]
  30. Salloway S, Mermel L. A, Seamans M, Aspinall G. O, Nam Shin J. E, Kurjanczyk L. A, Penner J. L. 1996; Miller-Fisher syndrome associated with Campylobacter jejuni bearing lipopolysaccharide molecules that mimic human ganglioside GD3. Infect Immun64:2945–2949
    [Google Scholar]
  31. Sherlock O, Vejborg R. M, Klemm P. 2005; The TibA adhesin/invasin from enterotoxigenic Escherichia coli is self recognizing and induces bacterial aggregation and biofilm formation. Infect Immun73:1954–1963[CrossRef]
    [Google Scholar]
  32. Solano C, Garcia B, Valle J, Berasain C, Ghigo J. M, Gamazo C, Lasa I. 2002; Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol43:793–808[CrossRef]
    [Google Scholar]
  33. Somers E. B, Schoeni J. L, Wong A. C. 1994; Effect of trisodium phosphate on biofilm and planktonic cells of Campylobacter jejuni , Escherichia coli O157 : H7, Listeria monocytogenes and Salmonella typhimurium . Int J Food Microbiol22:269–276[CrossRef]
    [Google Scholar]
  34. Szymanski C. M, Wren B. W. 2005; Protein glycosylation in bacterial mucosal pathogens. Nat Rev Microbiol3:225–237[CrossRef]
    [Google Scholar]
  35. Trachoo N, Frank J. F, Stern N. J. 2002; Survival of Campylobacter jejuni in biofilms isolated from chicken houses. J Food Prot65:1110–1116
    [Google Scholar]
  36. van Vliet A. H, Wooldridge K. G, Ketley J. M. 1998; Iron-responsive gene regulation in a Campylobacter jejuni fur mutant. J Bacteriol180:5291–5298
    [Google Scholar]
  37. Watnick P. I, Lauriano C. M, Klose K. E, Croal L, Kolter R. 2001; The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Mol Microbiol39:223–235[CrossRef]
    [Google Scholar]
  38. Whitchurch C. B, Tolker-Nielsen T, Ragas P. C, Mattick J. S. 2002; Extracellular DNA required for bacterial biofilm formation. Science295:1487[CrossRef]
    [Google Scholar]
  39. Whiteley M, Ott J. R, Weaver E. A, McLean R. J. 2001; Effects of community composition and growth rate on aquifer biofilm bacteria and their susceptibility to betadine disinfection. Environ Microbiol3:43–52[CrossRef]
    [Google Scholar]
  40. Wolfe A. J, Chang D. E, Walker J. D.10 other authors 2003; Evidence that acetyl phosphate functions as a global signal during biofilm development. Mol Microbiol48:977–988[CrossRef]
    [Google Scholar]
  41. Yuki N. 1997; Molecular mimicry between gangliosides and lipopolysaccharides of Campylobacter jejuni isolated from patients with Guillain-Barre syndrome and Miller Fisher syndrome. J Infect Dis176: Suppl 2S150–S153[CrossRef]
    [Google Scholar]
  42. Zimmer M, Barnhart H, Idris U, Lee M. D. 2003; Detection of Campylobacter jejuni strains in the water lines of a commercial broiler house and their relationship to the strains that colonized the chickens. Avian Dis47:101–107[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28358-0
Loading
/content/journal/micro/10.1099/mic.0.28358-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error