1887

Abstract

The competence transcription factor ComK is the master regulator of competence development in . In the regulatory pathway, ComK is involved in different interactions: (i) protein–DNA interactions to stimulate transcription of ComK-dependent genes and (ii) protein–protein interactions, divided into interactions with other proteins and interactions between ComK proteins involving oligomerization. The fact that ComK displays different types of interactions suggests the presence of specific, distinct domains in the protein. This paper describes a search for functional domains, by constructing ComK truncation variants, which were tested for DNA binding, oligomerization and transcription activation. Truncations at the C-terminal end of ComK demonstrated the requirement of this part for transcription activation, but not for DNA binding. The C-terminal region is probably involved in oligomerization of ComK-dimers into tetramers. Surprisingly, a ComK truncation variant lacking 9 aa from the N-terminal end (ΔN9ComK) showed higher transcription activation than wild-type ComK, when expressed in . However, in , transcription activation by ΔN9ComK was twofold lower than that by wild-type ComK, resulting from a five- to sixfold lower protein level of ComKΔN9. Thus, relatively, ΔN9ComK is more active in transcription activation than wild-type ComK. These results suggest that the presence of this N-terminal extension on ComK is a trade-off between high transcription activation and a thus far unidentified role in regulation of ComK.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28357-0
2006-02-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/2/473.html?itemId=/content/journal/micro/10.1099/mic.0.28357-0&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos, C. & Spizizen, J. ( 1961; ). Requirements for transformation in Bacillus subtilis. J Bacteriol 81, 741–746.
    [Google Scholar]
  2. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidham, J. G., Smith, J. A. & Struhl, K. ( 1998; ). Current Protocols in Molecular Biology. New York: Wiley.
  3. De Ruyter, P. G., Kuipers, O. P. & de Vos, W. M. ( 1996; ). Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62, 3662–3667.
    [Google Scholar]
  4. Dubnau, D. & Lovett, C. M. J. ( 2002; ). Transformation and recombination. In Bacillus subtilis and its Closest Relatives. From Genes to Cells, pp. 453–471. Edited by A. L. Sonenshein, J. A. Hoch & R. Losick. Washington, DC: American Society for Microbiology.
  5. Hahn, J., Roggiani, M. & Dubnau, D. ( 1995; ). The major role of Spo0A in genetic competence is to downregulate abrB, an essential competence gene. J Bacteriol 177, 3601–3605.
    [Google Scholar]
  6. Hamoen, L. W., van Werkhoven, A. F., Bijlsma, J. J. E., Dubnau, D. & Venema, G. ( 1998; ). The competence transcription factor of Bacillus subtilis recognizes short A/T-rich sequences arranged in a unique, flexible pattern along the DNA helix. Genes Dev 12, 1539–1550.[CrossRef]
    [Google Scholar]
  7. Hamoen, L. W., Smits, W. K., de Jong, A., Holsappel, S. & Kuipers, O. P. ( 2002; ). Improving the predictive value of the competence transcription factor (ComK) binding site in Bacillus subtilis using a genomic approach. Nucleic Acids Res 30, 5517–5528.[CrossRef]
    [Google Scholar]
  8. Hamoen, L. W., Kausche, D., Marahiel, M. A., van Sinderen, D., Venema, G. & Serror, P. ( 2003a; ). The Bacillus subtilis transition state regulator AbrB binds to the −35 promoter region of comK. FEMS Microbiol Lett 218, 299–304.[CrossRef]
    [Google Scholar]
  9. Hamoen, L. W., Venema, G. & Kuipers, O. P. ( 2003b; ). Controlling competence in Bacillus subtilis: shared use of regulators. Microbiology 149, 9–17.[CrossRef]
    [Google Scholar]
  10. Hoa, T. T., Tortosa, P., Albano, M. & Dubnau, D. ( 2002; ). Rok (YkuW) regulates genetic competence in Bacillus subtilis by directly repressing comK. Mol Microbiol 9, 365–373.
    [Google Scholar]
  11. Innes, M. A. & Gelfand, D. H. ( 1990; ). Optimization of PCRs. In PCR Protocols: a Guide to Methods and Applications, pp. 3–12. Edited by M. A. Innes, D. H. Gelfand, J. J. Sninsky & T. J. White. San Diego: Academic Press.
  12. Israelsen, H., Madsen, S. M., Vrang, A., Hansen, E. B. & Johansen, E. ( 1995; ). Cloning and partial characterization of regulated promoters from Lactococcus lactis Tn917-lacZ integrants with the new promoter probe vector, pAK80. Appl Environ Microbiol 61, 2540–2547.
    [Google Scholar]
  13. Kong, L. & Dubnau, D. ( 1994; ). Regulation of competence specific gene expression by Mec-mediated protein-protein interaction in Bacillus subtilis. Proc Natl Acad Sci U S A 91, 5793–5797.[CrossRef]
    [Google Scholar]
  14. Kuipers, O. P., Beerthuyzen, M. M., Siezen, R. J. & de Vos, W. M. ( 1993; ). Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis: requirement of expression of the nisA and nisI genes for development of immunity. Eur J Biochem 216, 281–291.[CrossRef]
    [Google Scholar]
  15. Kuipers, O. P., de Ruyter, P. G. G. A., Kleerebezem, M. & de Vos, W. M. ( 1998; ). Quorum-sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64, 15–21.[CrossRef]
    [Google Scholar]
  16. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  17. Larsen, R., Buist, G., Kuipers, O. P. & Kok, J. ( 2004; ). ArgR and AhrC are both required for regulation of arginine metabolism in Lactococcus lactis. J Bacteriol 186, 1147–1157.[CrossRef]
    [Google Scholar]
  18. Leenhouts, K. J. & Venema, G. ( 1993; ). Plasmids, a Practical Approach, pp. 65–94. Oxford: Oxford University Press.
  19. Msadek, T., Dartois, V., Kunst, F., Herbaud, M. L., Denizot, F. & Rapoport, G. ( 1998; ). ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Mol Microbiol 27, 899–914.[CrossRef]
    [Google Scholar]
  20. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  21. Serror, P. & Sonenshein, A. L. ( 1996; ). CodY is required for nutritional repression of Bacillus subtilis genetic competence. J Bacteriol 178, 5910–5915.
    [Google Scholar]
  22. Susanna, K. A., van der Werff, A. F., den Hengst, C. D., Calles, B., Salas, M., Venema, G., Hamoen, L. W. & Kuipers, O. P. ( 2004; ). Mechanism of transcription activation at the comG promoter by the competence transcription factor ComK of Bacillus subtilis. J Bacteriol 186, 1120–1128.[CrossRef]
    [Google Scholar]
  23. Towbin, H., Staehelin, T. & Gordon, J. ( 1979; ). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures and some applications. Proc Natl Acad Sci U S A 76, 4350–4354.[CrossRef]
    [Google Scholar]
  24. Turgay, K., Hamoen, L. W., Venema, G. & Dubnau, D. ( 1997; ). Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis. Genes Dev 11, 119–128.[CrossRef]
    [Google Scholar]
  25. Turgay, K., Hahn, J., Burghoorn, J. & Dubnau, D. ( 1998; ). Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J 17, 6730–6738.[CrossRef]
    [Google Scholar]
  26. Van Sinderen, D. & Venema, G. ( 1994; ). comK acts as an autoregulatory control switch in the signal transduction route to competence in Bacillus subtilis. J Bacteriol 176, 5762–5770.
    [Google Scholar]
  27. Van Sinderen, D., Luttinger, A., Kong, L., Dubnau, D., Venema, G. & Hamoen, L. ( 1995; ). comK encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis. Mol Microbiol 15, 455–462.[CrossRef]
    [Google Scholar]
  28. Venema, G., Pritchard, R. H. & Venema-Schroder, T. ( 1965; ). Fate of transforming deoxyribonucleic acid in Bacillus subtilis. J Bacteriol 89, 1250–1255.
    [Google Scholar]
  29. Werner, M. H., Huth, J. R., Gronenborn, A. M. & Clore, G. M. ( 1995; ). Molecular basis of human 46X, Y sex reversal revealed from the three-dimensional solution structure of the human SRY-DNA complex. Cell 81, 705–714.[CrossRef]
    [Google Scholar]
  30. Yuan, G. & Wong, S. L. ( 1995; ). Regulation of GroE expression in Bacillus subtilis: the involvement of the sigma A-like promoter and the roles of the inverted repeat sequence (CIRCE). J Bacteriol 177, 5427–5433.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28357-0
Loading
/content/journal/micro/10.1099/mic.0.28357-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error