1887

Abstract

Phospholipases C are known to be important regulators of cellular processes but may also act as virulence factors of pathogenic microbes. At least three genes in the genome of the human-pathogenic fungus encode phospholipases with conserved phospholipase C (Plc) motifs. None of the deduced protein sequences contain N-terminal signal peptides, suggesting that these phospholipases are not secreted. In contrast to its orthologue in , seems to be an essential gene. However, a conditional mutant with reduced transcript levels of had phenotypes similar to Plc1p-deficient mutants in , including reduced growth on media causing increased osmotic stress, on media with a non-glucose carbon source, or at elevated or lower temperatures, suggesting that CaPlc1p, like the Plc1p counterpart in , may be involved in multiple cellular processes. Furthermore, phenotypic screening of the heterozygous Δ/ mutant showed additional defects in hyphal formation. The loss of cannot be compensated by two additional genes of ( and ) encoding two almost identical phospholipases C with no counterpart in but containing structural elements found in bacterial phospholipases C. Although the promoter sequences of and differed dramatically, the transcriptional pattern of both genes was similar. In contrast to , and are not essential. Although / mutants had reduced abilities to produce hyphae on solid media, these mutants were as virulent as the wild-type in a model of systemic infection. These data suggest that contains two different classes of phospholipases C which are involved in cellular processes but which have no specific functions in pathogenicity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28353-0
2005-10-01
2020-07-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/10/3381.html?itemId=/content/journal/micro/10.1099/mic.0.28353-0&mimeType=html&fmt=ahah

References

  1. Andaluz E., Coque J. J., Cueva R., Larriba G. 2001; Sequencing of a 4·3 kbp region of chromosome 2 of Candida albicans reveals the presence of homologues of SHE9 from Saccharomyces cerevisiae and of bacterial phosphatidylinositol-phospholipase C. Yeast18:711–721[CrossRef]
    [Google Scholar]
  2. Ansari K., Martin S., Farkasovsky M., Ehbrecht I. M., Kuntzel H. 1999; Phospholipase C binds to the receptor-like GPR1 protein and controls pseudohyphal differentiation in Saccharomyces cerevisiae . J Biol Chem274:30052–30058[CrossRef]
    [Google Scholar]
  3. Bennett D. E., McCreary C. E., Coleman D. C. 1998; Genetic characterization of a phospholipase C gene from Candida albicans : presence of homologous sequences in Candida species other than Candida albicans . Microbiology144:55–72[CrossRef]
    [Google Scholar]
  4. Berridge M. J. 1993; Inositol trisphosphate and calcium signalling. Nature361:315–325[CrossRef]
    [Google Scholar]
  5. Buffo J., Herman M. A., Soll D. R. 1984; A characterization of pH-regulated dimorphism in Candida albicans . Mycopathologia85:21–30[CrossRef]
    [Google Scholar]
  6. Calderone R. A., Fonzi W. A. 2001; Virulence factors of Candida albicans . Trends Microbiol9:327–335[CrossRef]
    [Google Scholar]
  7. Care R. S., Trevethick J., Binley K. M., Sudbery P. E. 1999; The MET3 promoter: a new tool for Candida albicans molecular genetics. Mol Microbiol34:792–798[CrossRef]
    [Google Scholar]
  8. Coccetti P., Tisi R., Martegani E., Souza Teixeira L., Lopes Brandao R., de Miranda Castro I., Thevelein J. M. 1998; The PLC1 encoded phospholipase C in the yeast Saccharomyces cerevisiae is essential for glucose-induced phosphatidylinositol turnover and activation of plasma membrane H+-ATPase. Biochim Biophys Acta 1405;147–154[CrossRef]
    [Google Scholar]
  9. Davis D. A., Bruno V. M., Loza L., Filler S. G., Mitchell A. P. 2002; Candida albicans Mds3p, a conserved regulator of pH responses and virulence identified through insertional mutagenesis. Genetics162:1573–1581
    [Google Scholar]
  10. De Backer M. D., Maes D., Vandoninck S., Logghe M., Contreras R., Luyten W. H. 1999; Transformation of Candida albicans by electroporation. Yeast15:1609–1618[CrossRef]
    [Google Scholar]
  11. d'Enfert C., Goyard S., Rodriguez-Arnaveilhe S. 25 other authors 2005; CandidaDB: a genome database for Candida albicans pathogenomics. Nucleic Acids Res33:D353–D357
    [Google Scholar]
  12. Dingwall C., Laskey R. A. 1991; Nuclear targeting sequences – a consensus?. Trends Biochem Sci16:478–481[CrossRef]
    [Google Scholar]
  13. Enloe B., Diamond A., Mitchell A. P. 2000; A single-transformation gene function test in diploid Candida albicans . J Bacteriol182:5730–5736[CrossRef]
    [Google Scholar]
  14. Felk A., Kretschmar M., Albrecht A. & 7 other authors. 2002; Candida albicans hyphal formation and the expression of the Efg1-regulated proteinases Sap4 to Sap6 are required for the invasion of parenchymal organs. Infect Immun70:3689–3700[CrossRef]
    [Google Scholar]
  15. Flick J. S., Thorner J. 1993; Genetic and biochemical characterization of a phosphatidylinositol-specific phospholipase C in Saccharomyces cerevisiae . Mol Cell Biol13:5861–5876
    [Google Scholar]
  16. Fonzi W. A., Irwin M. Y. 1993; Isogenic strain construction and gene mapping in Candida albicans . Genetics134:717–728
    [Google Scholar]
  17. Fradin C., Hube B. 2003; Tissue infection and site-specific gene expression in Candida albicans . Adv Appl Microbiol53:271–290
    [Google Scholar]
  18. Fradin C., De Groot P., MacCallum D., Schaller M., Klis F., Odds F. C., Hube B. 2005; Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol56:397–415[CrossRef]
    [Google Scholar]
  19. Fu Y., Ibrahim A. S., Fonzi W., Zhou X., Ramos C. F., Ghannoum M. A. 1997; Cloning and characterization of a gene (LIP1) which encodes a lipase from the pathogenic yeast Candida albicans . Microbiology143:331–340[CrossRef]
    [Google Scholar]
  20. Ghannoum M. A. 2000; Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev13:122–143[CrossRef]
    [Google Scholar]
  21. Griffith O. H., Ryan M. 1999; Bacterial phosphatidylinositol-specific phospholipase C: structure, function, and interaction with lipids. Biochim Biophys Acta 1441;237–254[CrossRef]
    [Google Scholar]
  22. Hube B. 2004; From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans . Curr Opin Microbiol7:336–341[CrossRef]
    [Google Scholar]
  23. Hube B., Monod M., Schofield D. A., Brown A. J., Gow N. A. 1994; Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans . Mol Microbiol14:87–99[CrossRef]
    [Google Scholar]
  24. Hube B., Stehr F., Bossenz M., Mazur A., Kretschmar M., Schafer W. 2000; Secreted lipases of Candida albicans : cloning, characterisation and expression analysis of a new gene family with at least ten members. Arch Microbiol174:362–374[CrossRef]
    [Google Scholar]
  25. Hube B., Hess D., Baker C. A., Schaller M., Schafer W., Dolan J. W. 2001; The role and relevance of phospholipase D1 during growth and dimorphism of Candida albicans . Microbiology147:879–889
    [Google Scholar]
  26. Jun Y., Fratti R. A., Wickner W. 2004; Diacylglycerol and its formation by phospholipase C regulate Rab- and SNARE-dependent yeast vacuole fusion. J Biol Chem279:53186–53195[CrossRef]
    [Google Scholar]
  27. Knechtle P., Goyard S., Brachat S., Ibrahim-Granet O., d'Enfert C. 2005; Phosphatidylinositol-dependent phospholipases C Plc2 and Plc3 of Candida albicans are dispensable for morphogenesis and host-pathogen interaction. Res Microbiol156:822–829[CrossRef]
    [Google Scholar]
  28. Leuker C. E., Sonneborn A., Delbruck S., Ernst J. F. 1997; Sequence and promoter regulation of the PCK1 gene encoding phosphoenolpyruvate carboxykinase of the fungal pathogen Candida albicans . Gene192:235–240[CrossRef]
    [Google Scholar]
  29. Lin H., Choi J. H., Vancura A. 1998; Phosphoinositide-specific phospholipase C interacts with phosphatidylinositol kinase homolog TOR2. Biochem Biophys Res Commun252:285–289[CrossRef]
    [Google Scholar]
  30. Lin H., Choi J. H., Hasek J., DeLillo N., Lou W., Vancura A. 2000; Phospholipase C is involved in kinetochore function in Saccharomyces cerevisiae . Mol Cell Biol20:3597–3607[CrossRef]
    [Google Scholar]
  31. Lin H., Nguyen P., Vancura A. 2002; Phospholipase C interacts with Sgd1p and is required for expression of GPD1 and osmoresistance in Saccharomyces cerevisiae . Mol Genet Genomics267:313–320[CrossRef]
    [Google Scholar]
  32. Liu H., Köhler J., Fink G. R. 1994; Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science266:1723–1725[CrossRef]
    [Google Scholar]
  33. Naglik J., Albrecht A., Bader O., Hube B. 2004; Candida albicans proteinases and host/pathogen interactions. Cell Microbiol6:915–926[CrossRef]
    [Google Scholar]
  34. Nishizuka Y. 1992; Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science258:607–614[CrossRef]
    [Google Scholar]
  35. Ochocka A. M., Pawelczyk T. 2003; Isozymes delta of phosphoinositide-specific phospholipase C and their role in signal transduction in the cell. Acta Biochim Pol50:1097–1110
    [Google Scholar]
  36. Odom A. R., Stahlberg A., Wente S. R., York J. D. 2000; A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science287:2026–2029[CrossRef]
    [Google Scholar]
  37. Payne W. E., Fitzgerald-Hayes M. 1993; A mutation in PLC1 , a candidate phosphoinositide-specific phospholipase C gene from Saccharomyces cerevisiae , causes aberrant mitotic chromosome segregation. Mol Cell Biol13:4351–4364
    [Google Scholar]
  38. Pugh D., Cawson R. A. 1977; The cytochemical localization of phospholipase in Candida albicans infecting the chick chorio-allantoic membrane. Sabouraudia15:29–35[CrossRef]
    [Google Scholar]
  39. Rhee S. G. 2001; Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem70:281–312[CrossRef]
    [Google Scholar]
  40. Roemer T., Jiang B., Davison J. 15 other authors 2003; Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol Microbiol50:167–181[CrossRef]
    [Google Scholar]
  41. Sanchez-Martinez C., Perez-Martin J. 2002; Gpa2, a G-protein alpha subunit required for hyphal development in Candida albicans . Eukaryot Cell1:865–874[CrossRef]
    [Google Scholar]
  42. Sanglard D., Ischer F., Monod M., Bille J. 1996; Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob Agents Chemother40:2300–2305
    [Google Scholar]
  43. Sanglard D., Ischer F., Marchetti O., Entenza J., Bille J. 2003; Calcineurin A of Candida albicans : involvement in antifungal tolerance, cell morphogenesis and virulence. Mol Microbiol48:959–976[CrossRef]
    [Google Scholar]
  44. Schaller M., Korting H. C., Schafer W., Bastert J., Chen W., Hube B. 1999; Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis. Mol Microbiol34:169–180[CrossRef]
    [Google Scholar]
  45. Shepherd M. G., Yin C. Y., Ram S. P., Sullivan P. A. 1980; Germ tube induction in Candida albicans . Can J Microbiol26:21–26[CrossRef]
    [Google Scholar]
  46. Sigle H. C., Thewes S., Niewerth M., Korting H. C., Schafer-Korting M., Hube B. 2005; Oxygen accessibility and iron levels are critical factors for the antifungal action of ciclopirox against Candida albicans . J Antimicrob Chemother55:663–673[CrossRef]
    [Google Scholar]
  47. Stoldt V. R., Sonneborn A., Leuker C. E., Ernst J. F. 1997; Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans , is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J16:1982–1991[CrossRef]
    [Google Scholar]
  48. Sudbery P., Gow N., Berman J. 2004; The distinct morphogenic states of Candida albicans . Trends Microbiol12:317–324[CrossRef]
    [Google Scholar]
  49. Tisi R., Baldassa S., Belotti F., Martegani E. 2002; Phospholipase C is required for glucose-induced calcium influx in budding yeast. FEBS Lett520:133–138[CrossRef]
    [Google Scholar]
  50. Uhl M. A., Biery M., Craig N., Johnson A. D. 2003; Haploinsufficiency-based large-scale forward genetic analysis of filamentous growth in the diploid human fungal pathogen C. albicans . EMBO J22:2668–2678[CrossRef]
    [Google Scholar]
  51. Whiteway M., Oberholzer U. 2004; Candida morphogenesis and host-pathogen interactions. Curr Opin Microbiol7:350–357[CrossRef]
    [Google Scholar]
  52. Wilson R. B., Davis D., Mitchell A. P. 1999; Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol181:1868–1874
    [Google Scholar]
  53. Yesland K., Fonzi W. A. 2000; Allele-specific gene targeting in Candida albicans results from heterology between alleles. Microbiology146:2097–2104
    [Google Scholar]
  54. Yoko-o T., Matsui Y., Yagisawa H., Nojima H., Uno I., Toh-e A. 1993; The putative phosphoinositide-specific phospholipase C gene, PLC1 , of the yeast Saccharomyces cerevisiae is important for cell growth. Proc Natl Acad Sci U S A90:1804–1808[CrossRef]
    [Google Scholar]
  55. York J. D., Odom A. R., Murphy R., Ives E. B., Wente S. R. 1999; A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science285:96–100[CrossRef]
    [Google Scholar]
  56. York J. D., Guo S., Odom A. R., Spiegelberg B. D., Stolz L. E. 2001; An expanded view of inositol signaling. Adv Enzyme Regul41:57–71[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28353-0
Loading
/content/journal/micro/10.1099/mic.0.28353-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error